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Distributional Robustness



Distributional Robustness



What is robustness?

• Many fields: …robust statistics, robust control, 
robust optimization, adversarial robustness, 
robust learning…



Robustness in Modern 

Machine Learning and Optimization

 


• Do well on average

• Strength: high-performance (optimal)

• Weakness: fragile — adversarial attacks, 

off-policy RL, bias, fairness, causality

min
θ

𝔼
[X,Y]∼ ̂P

l( fθ(X), Y) 


• Do well in the worst case

• Strength: robustness

• Weakness: conservative — worst 

case doesn’t often happen

min
θ

sup
ξ∈𝒰

l(θ, ξ)

Modern machine learning

Image credit: Mnih’13, MuJuCo, Houska and Villanueva ‘19,  Hewing et al.’18

Robust optimization & control

Fig. 2: Planned trajectory with active chance constraints.
Shown is the mean trajectory of the car with 1-� confidence
level perpendicular to the car’s mean orientation.
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Using Lemma 1, we can formulate a bound on the
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where ⌃XY
i 2 R2⇥2 is the marginal variance of the joint

distribution of Xi and Yi. This procedure is similar to
constraint tightening in robust control. Here the amount of
tightening is related to an approximate confidence region for
the deviation from the mean system state.

Constraint (15) as well as the cost (12) require the variance
dynamics. The next section proposes a further simplification
to reduce computational cost by considering an approximate
evolution of the state variance.

E. Time-Varying Approximation of Variance Dynamics
The variance dynamics in (14b) require N

2 (n
2 + n)

additional variables in the optimization problem and can
increase computation time drastically. We trade off accuracy
in the system description with computational complexity
by evaluating the system variance around an approximate
evolution of the state and input. This state-action trajectory
can typically be chosen as a reference to be tracked or by
shifting a solution of the MPC optimization problem at an
earlier time step. Denoting a point on the approximate state-
action trajectory with (µ̄x

i , ūi), the approximate variance
dynamics are given by
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with Āi = [rxf(µ̄x
i , ūi) Bd]. The variance along the tra-

jectory thus does not depend on any optimization variable
and can be computed before the state measurement becomes
available at each sampling time. The precomputed variance
is then used to satisfy the chance constraints approximately,
by replacing ⌃XY with ⌃̄XY in (15). The resulting set is
denoted X̄ (⌃̄x

i ,⇥i). Figure 2 shows an example of a planned
trajectory with active chance constraints according to this
formulation with �2

2(p) = 1.
In the following, we use similar ideas to reduce the

computational complexity of the required GP evaluations

by dynamically choosing inducing inputs in a sparse GP
approximation.

F. Dynamic Sparse GP
Sparse approximations as outlined in Section II-C can

considerably speed up evaluation of a GP, with little deterio-
ration of prediction quality. For fast applications with high-
dimensional state-input spaces, however, the computational
burden can still be prohibitive.

We therefore propose to select inducing inputs locally at
each sampling time, which relies on the idea that in MPC
the area of interest at each sampling time typically lies close
to a known trajectory in the state-action space. Similar to the
approximation presented in the previous subsection, inducing
inputs can then be selected along the approximate trajectory,
e.g. according to a solution computed at a previous time step.

We illustrate the procedure using a two-dimensional ex-
ample in Figure 3 showing the dynamic approximation for
a simple double integrator. Shown is the contour plot of the
posterior variance of a GP with two input dimensions x1 and
x2. Additionally, two trajectories generated from an MPC are
shown. The solid red line corresponds to a current prediction
trajectory, while the dashed line shows the previous predic-
tion, which is used for local approximation of the GP. As
the figure illustrates, full GP and sparse approximation are
in close correspondence along the predicted trajectory of the
system.

The dynamic selection of local inducing points in a
receding horizon fashion allows for an additional speed-up
by computing successive approximations adding or removing
single inducing points by means of rank 1 updates [26].
These are applied to a reformulation of (5), which offers
better numerical properties [14] and avoids inversion of the
large matrix Qa
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⌘�1
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of single inducing points corresponds to a single line and
column changing in ⌃�1. The corresponding Cholesky fac-
torizations can thus efficiently be updated [27].

G. Resulting Control Formulation for Autonomous Racing
We integrate the approximations presented in the previous

sections in the learning-based MPC problem in (13) resulting
in the following approximate optimization problem

min
U, V

E

0

@
N�1X

i=0

l(µx
i , ui,⇥i, vi)

1

A (17a)

s.t. µx
i+1 = f(µx

i , ui) +Bdµ̃
d(µx

i , ui), (17b)
⇥i+1 = ⇥i + vi, (17c)
µx
i+1 2 X̄ (⌃̄x

i+1,⇥i+1), (17d)
ui 2 U , (17e)
µx
0 = x(k), ⇥0 = ⇥(k) , (17f)

428 Boris Houska and Mario E. Villanueva

Fig. 2: In contrast to Scenario-Tree MPC from Figure 1, Tube MPC optimizes a
single set-valued tube in the state space, which encloses all possible scenarios. The
tube (shaded area) may not intersect with the infeasible region in the state-space, in
this case an obstacle.

Due to its importance among robust MPC methods, the next section is devoted to
presenting the main strategies used to construct tube MPC based control algorithms.

5 Numerical Methods for Tube MPC

In this section we present strategies to construct tube model predictive control algo-
rithms. These strategies present some answers to the two main difficulties of tube
MPC: the outer optimization over feedback laws and the practical construction of
tubes for the inner optimization. Both problems can be addressed by appropriate
parametrizations, first, of the feedback law, and second, of the reachable set outer
approximations.

5.1 Feedback Parametrization

The most common class of feedback parametrizations for constructing approxima-
tions of (3) is that of affine feedback laws of the form

µ̃[K,k](t,x) = K(t)x+ k(t) .

If we substitute µ = µ̃[K,k] in (3), the new optimization variables are the matrix-
valued function K : R → Rnu ×Rnx and the vector-valued additive offset function
k : R→ Rnu . In this case, the control constraint,

∀t ∈ [0,T ], K(t)X(t, µ̃[K,k],x0)+ k(t)⊆ U ,

has to be added explicitly in order to ensure that the control law is feasible. Clearly,
this and other feedback parameterizations lead to conservative approximations

Empirical dist. ̂P =
N

∑
i=1

1
N

δξi

data (random)loss/cost model
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Distribution Shift in Robust Machine Learning

Example. Distributionally robust machine learning
Classify the presence of eyewear under adversarial attacks 
(cf. references)

 ̂Ptrain ≠ Qtest

Example. Generative modeling

We train a learning model to minimize 
the distance between two (high-
dimensional) data distributions using 
kernel methods and optimal transport

𝒟(P, Q)

 ̂Ptrain ≠ Qtest

Distribution shifts (slight) 
can break the system!



Learning with kernels and RKHSs
• A kernel is a symmetric function 

, e.g., Gaussian kernel .


• A p.d.  corresponds to a Hilbert space  (RKHS), which satisfies the 
reproducing property ,  

 is the canonical feature of .


• If  is a large (dense in  and ,  is a finite measure on ),  is a metric 
on . [Steinwart & Christmann 2008] 


• Generalization to integral probability metric (IPM) 

         . 

Special cases:

—> Maximum Mean Discrepancy (MMD) 

            

—> Wasserstein (type-1)

k : 𝒳 × 𝒳 → ℝ k(x, x′￼) = exp (−∥x − x′￼∥2
2 / 2σ2)

k ℋ
f(x) = ⟨ f, ϕ(x)⟩ℋ, ∀f ∈ ℋ, x ∈ 𝒳

ϕ(x) := k(x, ⋅ ) ℋ
ℋ C0 Lp(μ) μ ℝd γℋ
𝒫

IPM(ℱ; P, Q) := sup
f∈ℱ ∫ f d(P − Q)

ℱ = {f : ∥f∥ℋ ≤ 1}

MMDℋ(Q, P) := sup
∥f∥ℋ≤1 ∫ f d(Q − P)

= 𝔼x,x′￼∼Qk(x, x′￼) + 𝔼y,y′￼∼Pk(y, y′￼)
−2𝔼x∼Q,y∼Pk(x, y) .

ℱ = {f : ∥f∥lip ≤ 1}

 is the (kernel) mean embedding of  in .


 can be viewed as a generalized moment vector 
e.g., let  (related: Lasserre moment-SOS)

μ := ∫ ϕ dP P ℋ

μ
ϕ(x) = [x, x2]⊤

ℋμP := ∫ k(x, ⋅ ) dP(x)

Illustration design inspired by Gretton, Sutherland, Jitkrittum NeurIPS 2019 tutorial

duality

𝒫

γℋ(P, Q)}



Duality: 1-Wasserstein vs. MMD-k
How does the Wasserstein-1 behave?

W1 P Q sup f L 1 EPf X EQf Y .
f L supx y f x f y x y

W1=0.88

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

22/34

How does the MMD behave?
MMD with a broad kernel:
MMD P Q sup f 1 EPf X EQf Y .

MMD=1.8

23/34

How does the Wasserstein-1 behave?

W1 P Q sup f L 1 EPf X EQf Y .
f L supx y f x f y x y

W1=0.88

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

22/34

Illustration design inspired by Gretton, Sutherland, Jitkrittum NeurIPS 2019 tutorial
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Combine the strengths of ERM and RO: 
distributionally robust optimization (DRO)

• Robustifies against a set of probability measures  (ambiguity set), e.g., 


•  can be a metric-ball centered at , e.g., using -divergences, optimal 
transport, and kernel methods.

• One way of constructing ambiguity region: one can quantify the 

empirical convergence rate .

ℳ
ℳ ̂P f

D( ̂P, P0) ≤ ϵ

Find the worst-case distribution!

Problem of Moments [Stieltjes, Hausdorff, Hamburger, …]

δξi

̂P

min
θ

sup
Q∈ℳ

𝔼QL(θ, ξ) (DRO)

[Delage and Ye 2010, Scarf 1958]min
θ

sup
ξ∈𝒰

l(θ, ξ)(RO)

min
θ

𝔼
ξ∼ ̂P

l(θ, ξ)(ERM)

P0



 


• “Robust” under statistical fluctuation





• Not robust under data distribution shifts, 
when 

min
θ

1
N

N

∑
i=1

l(θ, ξi), ξi ∼ P0

𝔼P0
l( ̂θ, ξ) ≤

1
N

N

∑
i=1

l( ̂θ, ξi) + 𝒪(
1

N
)

Q ( ≠ P0)

Empirical Risk Minimization

δξi

̂PN :=
1
N

N

∑
i=1

δξi
⇒ P0 ≠ Q

Distributionally Robust Learning

•Minimize risk under a local worst-case distribution 


•Distribution shift described by an ambiguity set . 
Example: maximum mean discrepancy-ball 

 or Wasserstein-ball

•Question: how do we actually solve an MMD-
constrained optimization problem? (Non-trivial!)

Q
ℳ

{Q : MMD(Q, ̂PN) ≤ ρ}

min
θ

sup
Q∈ℳ

𝔼QL(θ, ξ)

Robust learning under distribution shift
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Kernel distributionally robust optimization

Kernel DRO Theorem (simplified). [Z. et al. 2021] 
DRO problem is equivalent to the dual kernel 
machine learning problem, i.e., (DRO)=(K). 
 

(K) min
θ,f∈ℋ

1
N

N

∑
i=1

f(ξi) + ϵ∥f∥ℋ subject to l(θ, ⋅ ) ≤ f

cf. Kantorovich duality in optimal transport (OT) and 
Moreau-Yosida regularization in convex analysis

(DRO) min
θ

sup
MMD(Q, ̂P)≤ϵ

𝔼Ql(θ, ξ)

Geometric intuition: using kernel approximations as 
robust surrogate losses (flatten the curve) 

 

f

l(θ, ⋅ ) l(θ, ⋅ )

f

Primal DRO (not solvable as it is) Example. Robust least squares  
[El Ghaoui Lebret ’97]

minimize l(θ, ξ) := ∥A(ξ) ⋅ θ − b∥2
2

Given historical samples ξ1, ξ2, …, ξN

(a) Robust least squares loss (b) Geometric interpretation

Figure 3: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain ✓ ⇤ and tested it on a test dataset
of 500 samples. We then vary the perturbation � from 0 to 4. (b) (red) is the dual optimal solution
f⇤

0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
bars the empirical distribution. We can observe that f⇤

0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.

4 Numerical studies227

This section demonstrates the theoretical insights of K-DRO in action. It is not a benchmark of228

state-of-art performances. See the appendix for more results. The code will be available online229

4.1 Distributionally robust solution to uncertain least squares230

We first consider a robust least squares problem adapted from [17], which demonstrated an im-231

portant application of RO to statistical learning historically. (See also [9, Ch. 6.4].) The task232

is to minimize the objective kA✓ � bk22 w.r.t. ✓. A is modeled by A(⇠) = A0 + ⇠A1, where233

⇠ 2 X is uncertain, X = [�1, 1], and A0, A1 2 R10⇥10, b 2 R10 are given. We compare234

K-DRO against using (a) empirical risk minimization (ERM; also known as sample average ap-235

proximation) that minimizes 1
N

PN
i=1 kA(⇠i) ✓ � bk22, (b) worst-case RO via SDP from [17]. We236

consider a data-driven setting with given samples {⇠i}Ni=1. We formulate the K-DRO problem as237

min✓ maxP2P,µ2C E⇠⇠P kA(⇠) ✓� bk22 subject to
R
�dP = µ, where we choose the uncertainty238

set to be C = {µ : kµ� µP̂ kH  ✏}, where µP̂ =
PN

i=1
1
N �(⇠i).239

Empirical samples {⇠i}Ni=1(N = 10) are generated uniformly from [�0.5, 0.5]. We then apply K-240

DRO formulation (10). To test the solution, we create a distribution shift by generating test samples241

from [�0.5 · (1+�), 0.5 · (1+�)], where � is a perturbation varying within [0, 4]. Figure 3a shows242

this comparison. As the perturbation increases, ERM quickly lost robustness. On the other hand, RO243

is the most robust with the trade-off of being conservative. As expected, K-DRO achieves some level244

of optimality while retaining robustness. We then ran K-DRO with fewer empirical samples (N = 5)245

to show the geometric interpretations. We plot the optimal dual solution f⇤

0 + f⇤ in Figure 3b.246

Recall it is an over-estimator of the loss l(✓, ·). We solve (7) to obtain a worst-case distribution P ⇤.247

Comparing P ⇤ with P̂ , we can observe the adversarial behavior of the worst-case distribution. See248

the caption for more description.249

4.2 Distributionally robust classification250

We now show how kernel-DRO can be applied to train a classification model g✓ : x 7! y. We consider251

a two-dimensional (x 2 R2), two-class classification problem (y 2 {�1, 1}). Samples from class 1252

(red) are drawn from p(x|y = 1) = N ((5, 0)>, I), while that from class -1 (blue) are generated from253

N
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(3, 1)>, diag(1/2, 2)

�
. The class prior probability is uniform i.e., p(y = �1) = p(y = 1) = 1/2.254

The training samples are shown in Figure 4a. The model is trained by solving K-DRO (10), where255

⇠i := [xi, yi], with the hinge loss l(✓, ⇠) := max(0, 1� g✓(x)y). We use a product kernel of the form256

k((x, y), (x0, y0)) = kX(x, x0)kY (y, y0), where both kX , kY are Gaussian kernels. For simplicity,257

we use a linear classifier g✓(x) := sign(m>x+ c) where ✓ := (m, c).258
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Robustifying with DRO

What if ?f ≡ c ∈ ℝ



Comparing the “potentials”
2-Wasserstein DRO


Primal:              


Dual:              


where 


Q: what if the  is the loss for a nonlinear 
model (such as deep neural nets)? 

min
θ

sup
W2(P, ̂P)≤ϵ

𝔼P l(θ, ξ)

min
θ,λ>0

1
N

N

∑
i=1

lλ∥⋅∥2

θ (ξi) + λϵ2

lλ∥⋅∥2

θ (x) := sup
u

l(θ, u) − λ∥u − x∥2

l

Kernel DRO


Primal:       


Dual:      

min
θ

sup
MMD(P, ̂P)≤ϵ

𝔼P l(θ, ξ)

min
θ,f∈ℋ

1
N

N

∑
i=1

f(ξi) + ϵ∥f∥ℋ

s . t . l(θ, ξ) ≤ f(ξ), ∀ξ a.e.

f
l(θ, ⋅ )



Applications: Distributionally Robust Deep Learning and Control

Application. Certified adversarially robust deep 
learning (Classify the presence of glasses using a 
20-layer DNN model)

Sinha et al. 2017; Z et al. 2022

°5 0 5 10 15
x1

°4

°2

0

2

4

6

x
2

Application. Distributional robust chance-
constrained stochastic control with 
Bootstrapped ambiguity


inf
P∈𝒫

P( f(x, ξ) ≤ 0) ≥ 95 %

Nemmour et al. 2022



Variational problem of dynamical systems

We can evolve the discrete time dynamical 
system by solving the variational problem 
(Jordan et al. 1998)





• Question: What if we don’t know the physical 
law that governs the evolution of the system, 
e.g.,  unknown?

ρt+1 = argminϱ F(ϱ) +
1
2τ

W2
2(ϱ, ϱt)

F

Image credit: https://en.wikipedia.org/wiki/Heat_equation

https://en.wikipedia.org/wiki/Heat_equation


MMD Motivation: data-driven modeling of 
dynamical systems

μt

νt νt+1

μt+1

Unlike the gradient flow in , the 
distance between the evolving data-
driven dynamics models can be 
conveniently measured in the Hilbert 
norm 

 

This motivates us to use this Hilbert norm 
(i.e. MMD) as a natural tool for working 
with such data-driven models.

W2

∥μt+1 − νt+1∥ℋ = ∥𝒦μt − 𝒦νt∥ℋ

≤ ∥𝒦∥∥μt − νt∥ℋ

We can use a data-driven 
model to model the unknown/
uncertain dynamical systems 
from data/observation 
(Koopman theory, conditional 
embedding, etc.)

μt+1 = 𝒦μt, 𝒦 := 𝒞XY(𝒞XX)−1, μP := ∫ k(x, ⋅ ) dP(x)

Song et al. 2009, Fukumizu et al. 2011, Williams et al. 2015, Klus et al. 2018 etc.



Summary: optimization under distribution shift using MMD

MMDH(P, Q) := sup
Îf ÎHÆ1

⁄
f d(P ≠ Q)

Kernel DRO

(P) min
◊

sup
D(P,P̂)Æ‘

EP l(◊, ›)

(D) min
◊,f œH

1
n

nÿ

i=1
f (›i) + ‘Îf ÎH

s. t.l(◊, ·) Æ f a.e.

I A generalized dual program for solving
DRO with general ambiguity sets and
IPM-balls, with weak assumptions on the
loss function (possibly nonlinear)

I Takeaway:
I Large (universal) RKHSs as dual spaces

for DRO
I Flatten the curve, smooth is robust

Summary: optimization under distribution shift using MMD

MMDH(P, Q) := sup
Îf ÎHÆ1

⁄
f d(P ≠ Q)

Kernel DRO

(P) min
◊

sup
D(P,P̂)Æ‘

EP l(◊, ›)

(D) min
◊,f œH

1
n

nÿ

i=1
f (›i) + ‘Îf ÎH

s. t.l(◊, ·) Æ f a.e.
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