From Gradient Flow Force-Balance to Distributionally Robust Learning

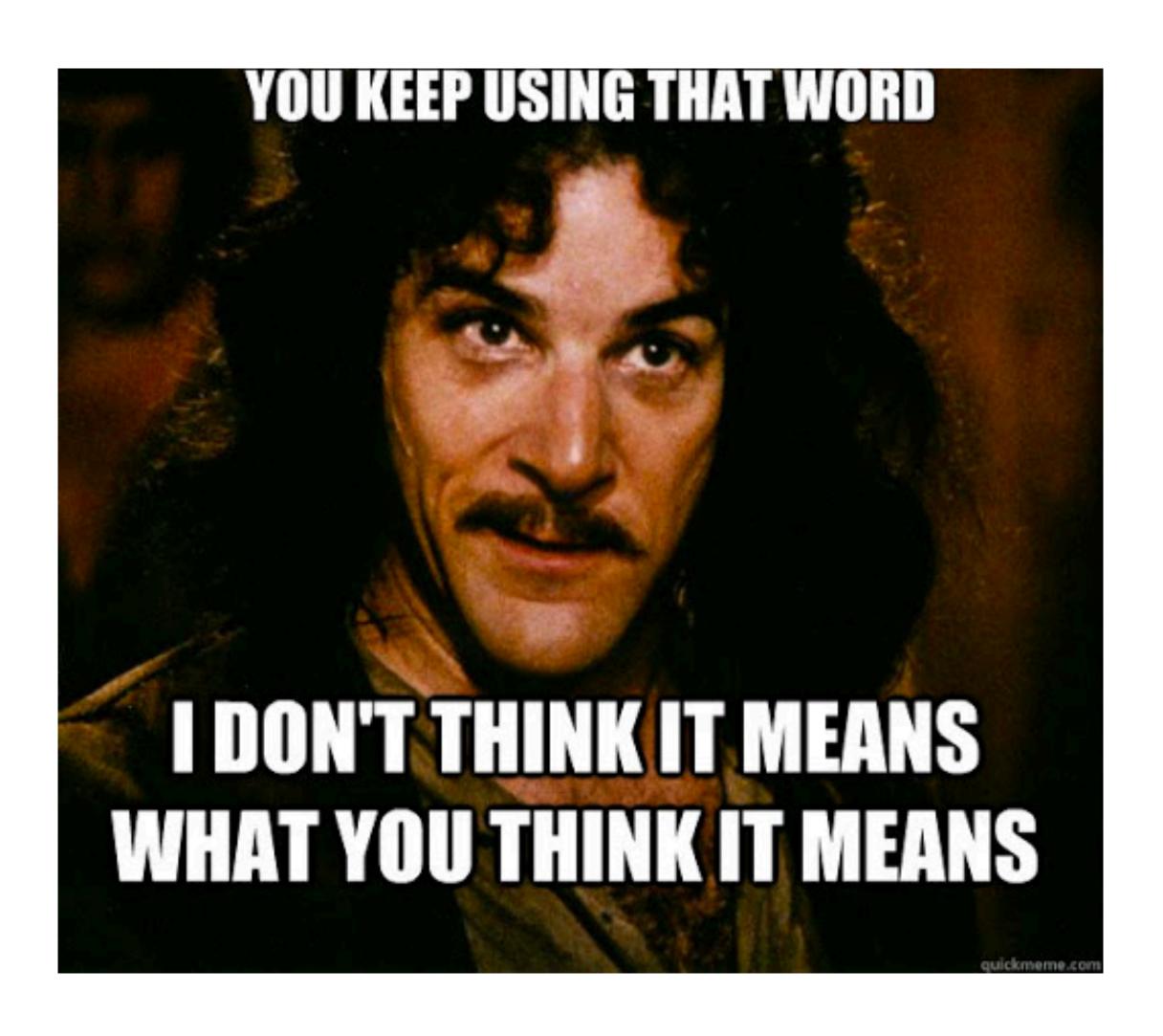
Jia-Jie Zhu

Weierstrass Institute for Applied Analysis and Stochastics

Berlin, Germany

European Conference on Computational Optimization (EUCCO) Heidelberg University, Germany. September 26th, 2023

Distributional <u>robustness</u>, but what kind?



Motivation: From statistical learning to robust learning Empirical Risk Minimization Distributionally Robust Optimization (DRO)

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$$

• "Robust" under statistical fluctuation

$$\mathbb{E}_{P_0} l(\hat{\theta}, \xi) \le \frac{1}{N} \sum_{i=1}^{N} l(\hat{\theta}, \xi_i) + \mathcal{O}(\frac{1}{\sqrt{N}})$$

• Not robust under <u>data distribution shifts</u>, when Q ($\neq P_0$)

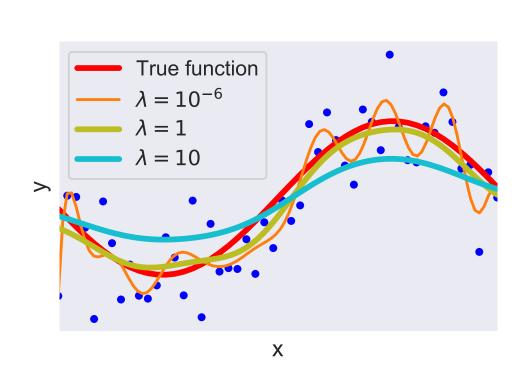
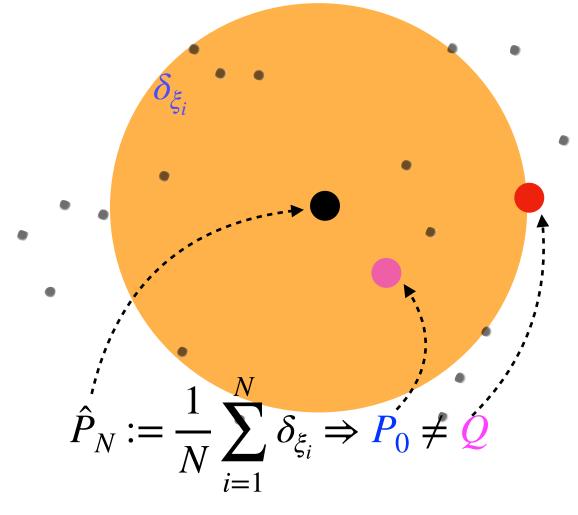
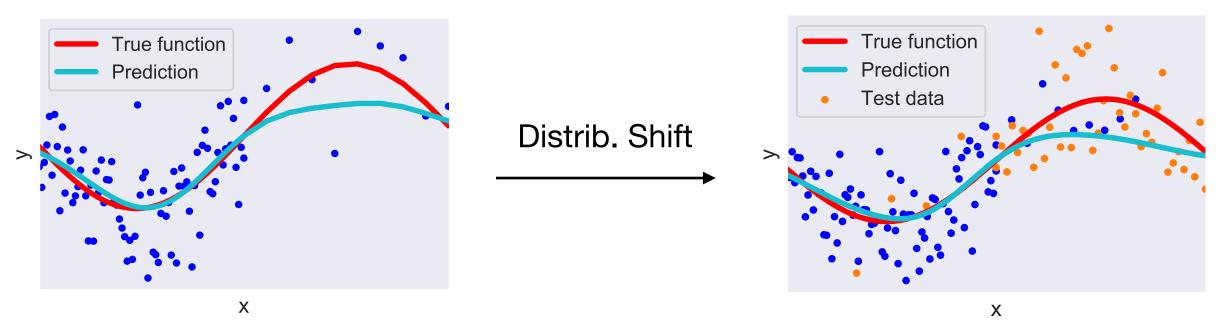


Figure credit: H. Kremer, J. Zhu



$$\min_{\theta} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q} l(\theta, \xi)$$

Worst-case distribution Q within the <u>ambiguity set</u> \mathcal{M} [Delage & Ye 2010] in certain <u>geometry</u>.



Why study new geometry?

New geometries leading to new fields of research and breakthroughs:

Information geometry [S. Amari et al.] e.g. descent in Fisher-Rao geometry

Wasserstein Gradient flow [F. Otto et al.] e.g. Fokker-Planck equation as Wasserstein flow

Background: Kantorovich-Wasserstein Geometry

Definition. The p-Wasserstein distance between probability measures P,Q on \mathbb{R}^d (with p finite moments, $p\geq 1$) is defined through the following Kantorovich problem

$$W_p^p(P, Q) := \inf \left\{ \int |x - y|^p d\Pi(x, y) \middle| \pi_{\#}^{(1)}\Pi = P, \ \pi_{\#}^{(2)}\Pi = Q \right\}$$

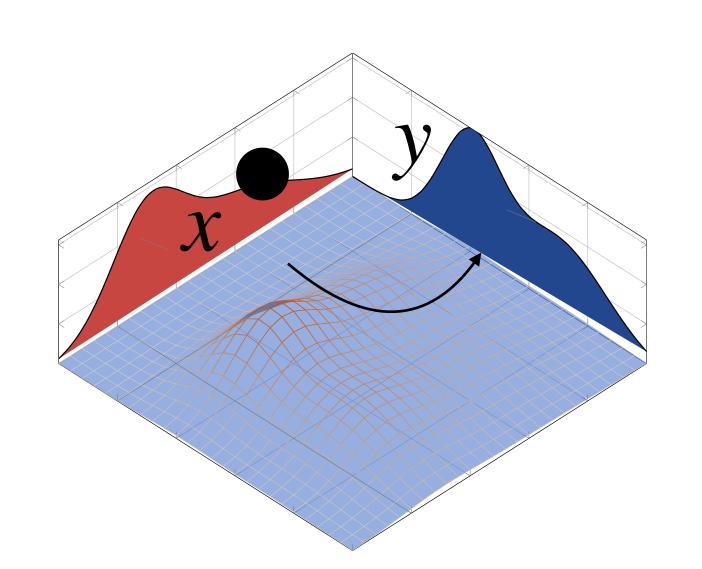
(Dual Kantorovich problem)

$$= \sup \left\{ \int \psi_1(x) \, dP(x) + \int \psi_2(y) \, dQ(y) \, \middle| \, \psi_1(x) + \psi_2(y) \le |x - y|^p \, \right\}$$

2-Wasserstein space $(\operatorname{Prob}(\mathbb{R}^d), W_2)$ is a geodesic metric space.

Dynamic formulation: à la Benamou-Brenier

$$W_2^2(\mathbf{P}, \mathbf{Q}) = \min \left\{ \int_0^1 \int |v_t|^2 d\mu_t dt \, \middle| \, \mu_0 = \mathbf{P}, \mu_1 = \mathbf{Q}, \, \partial_t \mu_t + \operatorname{div}(v_t \mu_t) = 0 \right\}$$



Background: MMD and interaction force

Definition. Kernel **Maximum-Mean Discrepancy** (MMD) associated with (PSD) kernel k (e.g., $k(x, x') := e^{-|x-x'|^2/\sigma}$)

$$MMD(P,Q) := \left\| \int k(x,\cdot) dP - \int k(x,\cdot) dQ \right\|_{\mathcal{H}}.$$

 $(\operatorname{Prob}(\mathbb{R}^d), \operatorname{MMD})$ is a (simple) metric space.

Dual formulation as an integral probability metric.

$$MMD(P, Q) = \sup_{\|f\|_{\mathcal{H}} \le 1} \int f d(P - Q)$$

 \mathscr{H} is the **reproducing kernel Hilbert space** \mathscr{H} (RKHS), which satisfies $f(x) = \langle f, \phi(x) \rangle_{\mathscr{H}}, \forall f \in \mathscr{H}, x \in \mathscr{X},$ $\phi(x) := k(x, \cdot)$ is the canonical feature of \mathscr{H} .

As an interaction energy for Wasserstein GF [Arbel et al.]

$$MMD^{2}(P, Q) = \iint k(x, y) d(P - Q)(x) d(P - Q)(y)$$

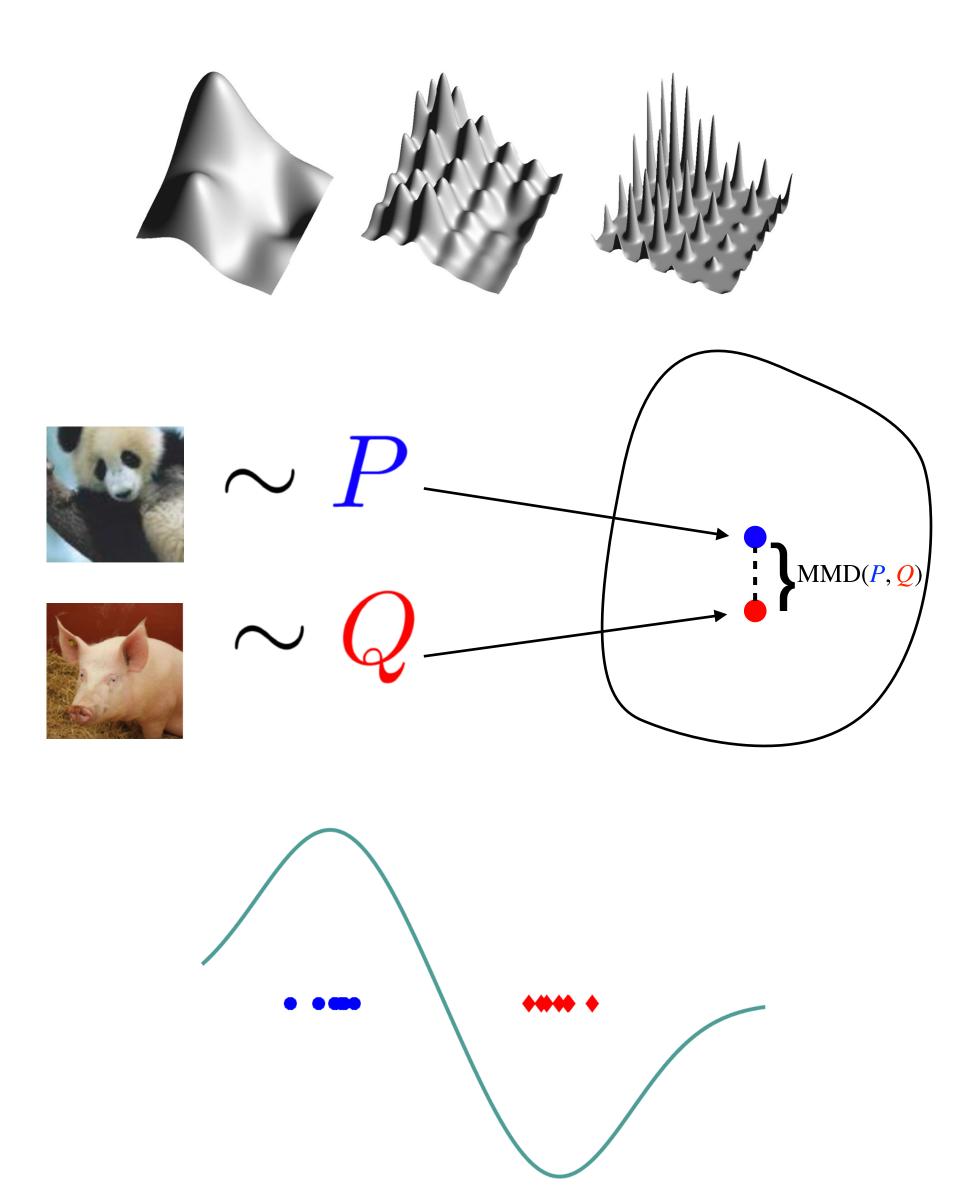


Figure credit: W. Jitkrittum, J. Zhu, H. Wendland

Gradient Flow Force-Balance

Gradient flow facts

Otto's Gradient flow equation in the Wasserstein space

$$\partial_t \mu - \nabla \cdot (\mu \nabla \frac{\delta F}{\delta \mu}[\mu]) = 0$$

e.g., diffusion, Fokker Planck equation. It describes the "steepest" dissipation of energy F in $(\operatorname{Prob}(\bar{X}), W_2)$. [Otto et al 2000s, Ambrosio 2005, ...]

In a different flavor, we can write it just like ODE gradient flow $\dot{x} = -\nabla f(x)$ in the **primal rate-form**

$$\dot{\mu} = - \mathbb{K}_{ ext{Otto}}(\mu) \; ext{D}F \; ext{ (D}F ext{ is the (sub)diff., e.g., in the sense of Fréchet)}$$

Time-discretization yields the *minimizing movement scheme* (MMS)

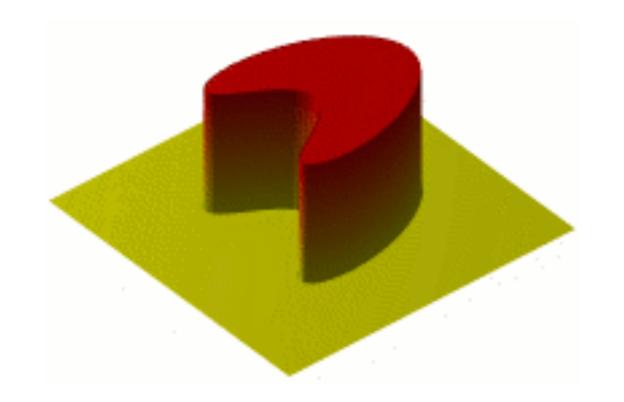
"JKO Scheme"
$$u_k \in \arg\inf_{u \in \mathscr{P}} F(u) + \frac{1}{2\tau} W_2^2 \left(u, u_{k-1}\right)$$

SIAM J. MATH. ANAL. Vol. 29, No. 1, pp. 1–17, January 1998

© 1998 Society for Industrial and Applied Mathemati

THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION*

RICHARD JORDAN[†], DAVID KINDERLEHRER[‡], AND FELIX OTTO[§]



ODE flow: gradient descent
$$x^{k} \in \arg\min_{x \in \mathbb{R}^{d}} F(x) + \frac{1}{2\tau} ||x - x^{k-1}||^{2}.$$

Gradient flow force-balance

Force-balance in Wasserstein MMS $u_k \in \arg\inf_{u \in \mathcal{P}} F(u) + \frac{1}{2\tau} W_2^2\left(u, u_{k-1}\right)$

 $DF + \frac{\phi}{\tau} = \text{const.}, \ \phi : \text{``Kantorovich potential''}$ Force:

drive movement e.g., entropy

Dissipation Geometry: resist movement e.g., viscosity $\nabla f(x_t) + \frac{x_t^\top - x_{t-1}^\top}{\tau} = 0 \in X^*$

e.g., entropy

e.g., viscosity

$$\nabla f(x_t) + \frac{x_t' - x_{t-1}'}{\tau} = 0 \in X^{>}$$

In practice, approximate ϕ (and hence $-\mathrm{D}F$) based on data samples using function approximators (force matching, score matching), NN/RKHS, e.g.,

$$\phi \approx f = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) \in \mathcal{H}.$$

We will now see two applications of this force-balance relation to robust learning

Robust Learning under (Joint) Distribution Shift

Kernel DRO under distribution shift

Primal DRO (not solvable as it is)

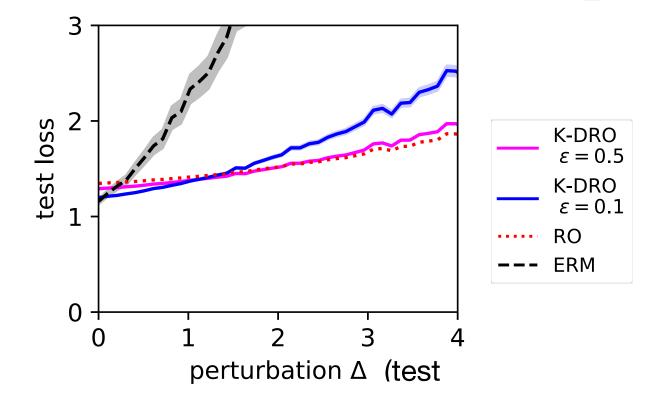
(DRO)
$$\min_{\theta \in MMD(Q,\hat{P}) \leq \epsilon} \mathbb{E}_{Q} l(\theta,\xi)$$
 $\sim P$ $\sim Q$

Kernel DRO Theorem (simplified). [Z. et al. 2021] DRO problem is equivalent to the dual kernel machine learning problem, i.e., (DRO)=(K).

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \varepsilon ||f||_{\mathcal{H}}$$
 subject to $l(\theta, \cdot) \leq f$

Example. Robust least squares

min
$$l(\theta, \xi) := ||A(\xi) \cdot \theta - b||_2^2$$



Entropy regularization ("interior point method")

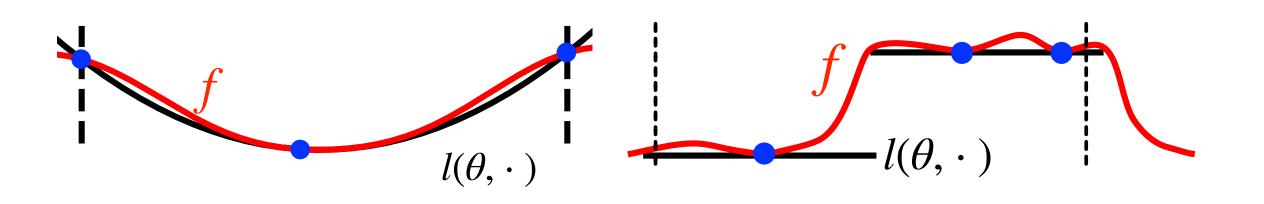
$$\mathrm{MMD}(Q, \hat{P}) + \lambda D_{\phi}(Q || \omega) \le \epsilon$$

Dual. Adapted from [Kremer et al., Z. 2023]

$$\inf_{\theta,f\in\mathcal{H}} \left\{ \mathbb{E}_{\hat{P}} f + \epsilon \|f\|_{\mathcal{H}} + \lambda \mathbb{E}_{\omega} \phi^* \left(\frac{-f+l}{\lambda} \right) \right\}$$

soft cons. $\phi_{\text{KL}}^*(t) = \exp(t)$ log-barrier $\phi_{\log}^*(t) = -\log(1-t)$

Geometric intuition: **dual kernel function f** as robust surrogate losses (<u>flatten the curve</u>)

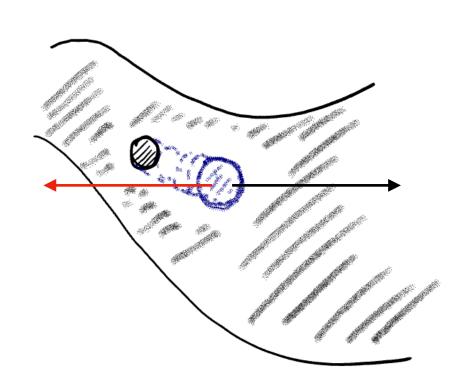


Force-balance of Kernel DRO

 $=:f\in\mathcal{H}$

Primal DRO:
$$\min_{\theta \in \mathrm{MMD}(Q,\hat{P}) \leq \epsilon} \mathbb{E}_{Q} l(\theta,\xi)$$

Lagrangian:
$$\min_{\theta,\gamma\geq 0}\sup_{\mu\in\mathscr{P}}\mathbb{E}_{\mu}\,l(\theta,x)-\gamma\cdot\mathrm{MMD}^{2}(\mu,\hat{\mu}_{N})+\gamma\epsilon^{2}$$



MMS in kernel-MMD

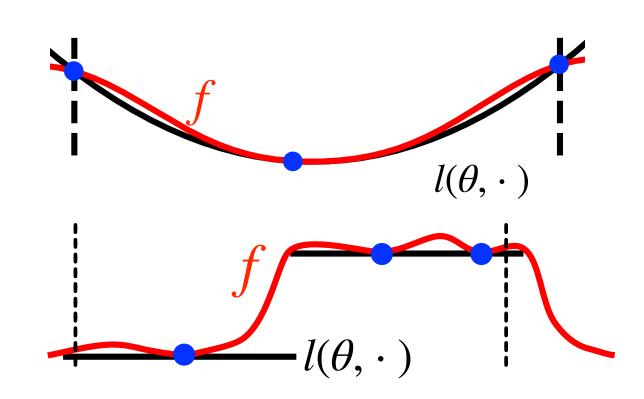
$$\inf_{\mu \in \mathscr{P}} F(\mu) + \frac{1}{2\tau} \text{MMD}^2(\mu, \mu^k) \implies -D^{L^2} F = \frac{1}{\tau} \int_{\mathbb{R}^2} k(x, \cdot) d(\mu - \mu^k)(x) + \text{const surrogate losses}$$

Dual kernel function f as robust surrogate losses flatten the curve → force balance

Force-balance using function approximation RKHS functions, e.g.,

$$-DF = f + f_0, f = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) \in \mathcal{H}, f_0 \in \mathbb{R}$$

$$D^{L^2}F = l(\theta, \cdot) \Longrightarrow$$
 force-balance relation: $l(\theta, \cdot) = f + f_0$ a.e. (force matching, score matching)



Robust Learning under Structured Distribution Shift

From statistical fluctuation to structured distribution shift (Mild) (Strong)

Learning task What can go wrong?

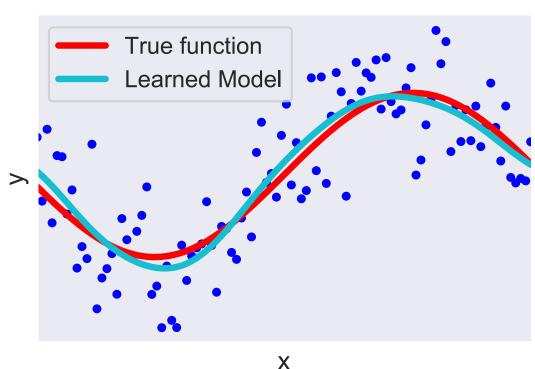
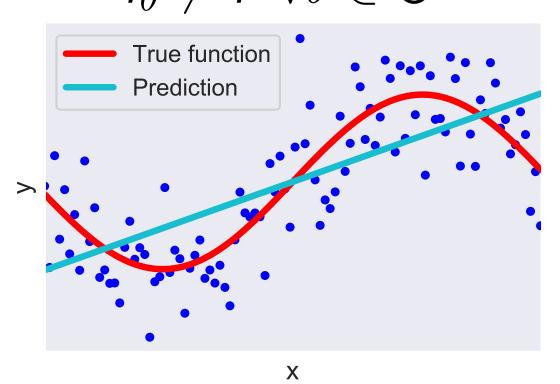


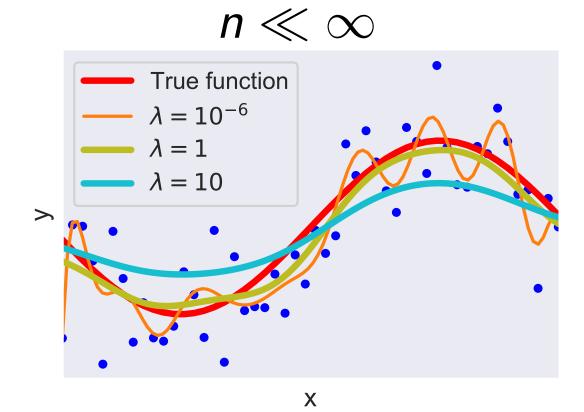
Figure credit: Heiner Kremer

Model mis-specification $f_{\theta} \neq f \ \forall \theta \in \Theta$

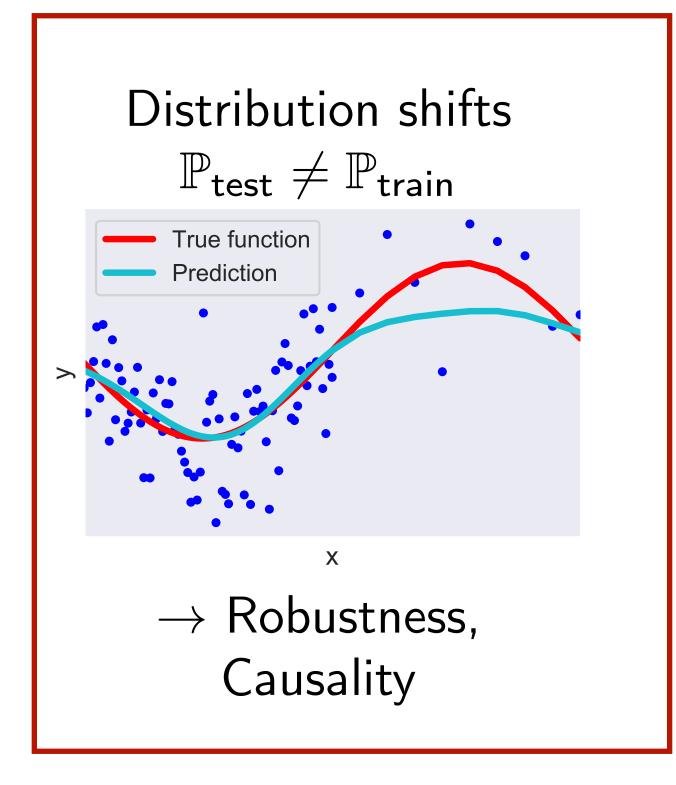


→ Use flexible models (NN/non-parametric)

Finite sample bias



→ Statistical learning theory/regularization

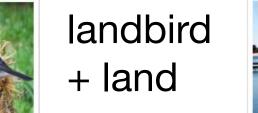


 Q_{test}



waterbird + land

 \hat{P} train



waterbird + water

[Sagawa et al. 2020]

Wasserstein/Kernel DRO not suitable for (strong) structured distribution shifts!

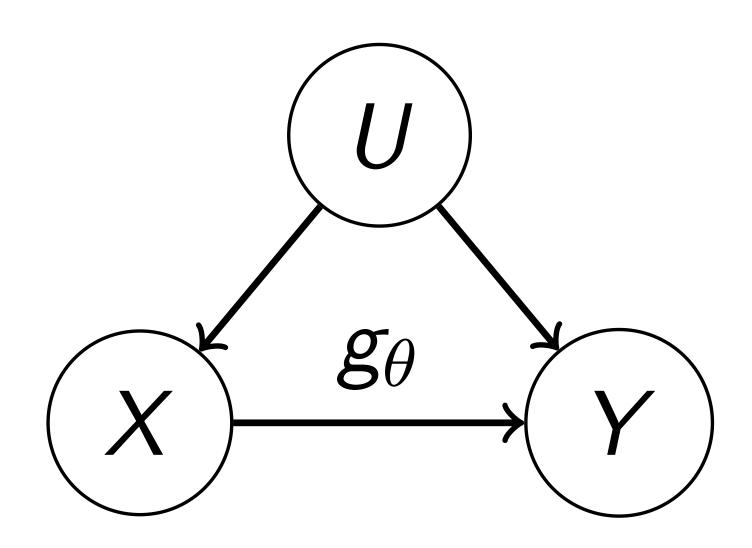
Structured Distribution Shift — Causal Confounding

Causal confounding can lead to much stronger distribution shifts than those considered in (joint) distribution shift, e.g., DRO, adversarial robustness.

X: Smoking, Y: Cancer, U: Lifestyle

$$Y := g_{\theta}(X) + \epsilon_{U}, \quad \mathbb{E}[\epsilon_{U}] = 0, \text{ but } \mathbb{E}[\epsilon_{U}|X] \neq 0$$

$$\implies g_{\theta}(x) \neq \mathbb{E}[Y|X = x]$$



Regression $\min_{\theta} \mathbb{E}[\|Y - g_{\theta}(X)\|^2]$ or DRO does not work in this case.

Kernel Method of Moment: conditional moment restriction for causal inference

Robustness against structured distribution shifts instead of (joint-)DRO. Estimating g_{θ} via conditional moment restriction (CMR)

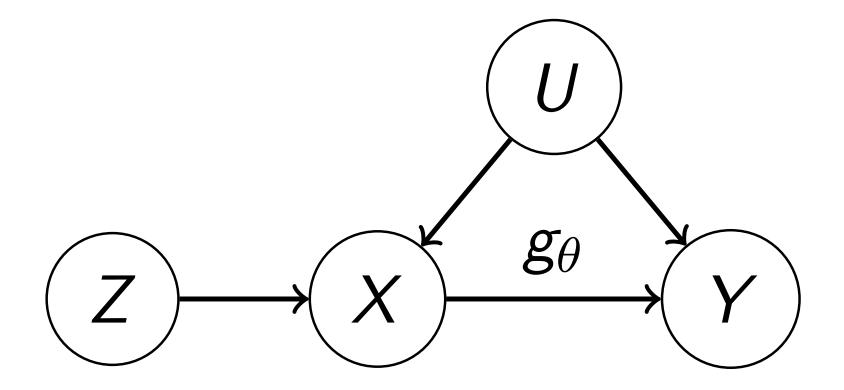
$$\mathbb{E}[Y - g_{\theta}(X) | Z] = 0 \, \mathbb{P}_Z \text{-a.s.}$$

Generalized Empirical likelihood [Owen, 1988; Qin and Lawless, 1994] with CMR [Bierens, 1982]. Equivalently, generalized method of moment (GMM)

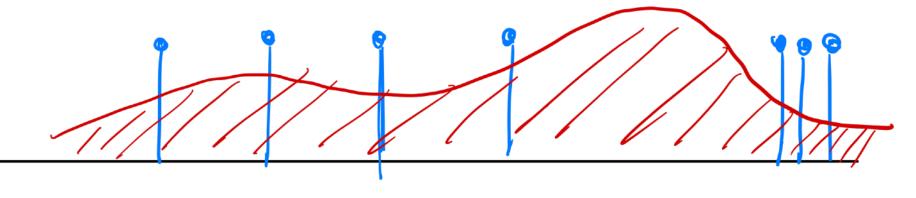
$$\inf_{\boldsymbol{\theta}, \boldsymbol{Q} \in \mathcal{P}} D_{\boldsymbol{\phi}}(\boldsymbol{Q} \| \hat{\boldsymbol{P}}) \text{ s.t. } \mathbb{E}_{\boldsymbol{Q}} \left[\left(\boldsymbol{Y} - \boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{X}) \right)^T h(\boldsymbol{Z}) \right] = 0, \ \forall h \in \mathcal{H}$$

Kernel MoM [Kremer et al., z. 2023] with CMR

$$\inf_{\theta, \mathbf{Q} \in \mathcal{P}} \frac{1}{2} \operatorname{MMD}^{2}(\mathbf{Q}, \hat{\mathbf{P}}) \text{ s.t. } \mathbb{E}_{\mathbf{Q}} \left[\left(Y - g_{\theta}(X) \right)^{T} h(Z) \right] = 0$$



Instrument: Genetic predisposition for nicotine addiction Z



Lift the restriction that Q is an atomic distribution

Kernel MoM: duality and algorithm

$$\theta^{\text{KMM}} = \arg\min_{\theta} R(\theta)$$

$$R(\theta) := \inf_{Q \in \mathscr{P}} \frac{1}{2} \operatorname{MMD}^{2}(Q, \hat{P}) \text{ s.t. } \mathbb{E}_{Q} \left[\left(\psi(X; \theta) \right)^{T} h(Z) \right] = 0$$

Theorem. [Kremer et al., Z. 2023] The MMD profile $R(\theta)$ has the strongly dual form

$$R(\theta) = \sup_{\substack{f_0 \in \mathbb{R}, f \in \mathcal{F}, \\ h \in \mathcal{H}}} f_0 + \frac{1}{n} \sum_{i=1}^n f(x_i, z_i) - \frac{1}{2} ||f||_{\mathcal{F}}^2$$

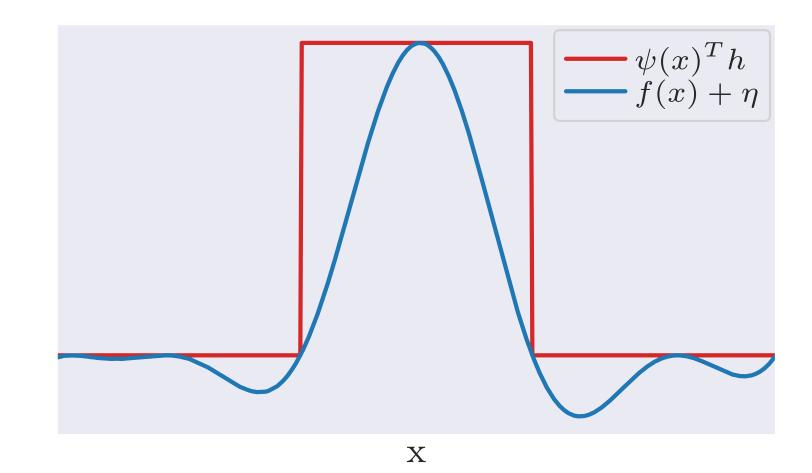
s.t.
$$f_0 + f(x, z) \le \psi(x; \theta)^T h(z) \quad \forall (x, z) \in \mathcal{X} \times \mathcal{Z}.$$

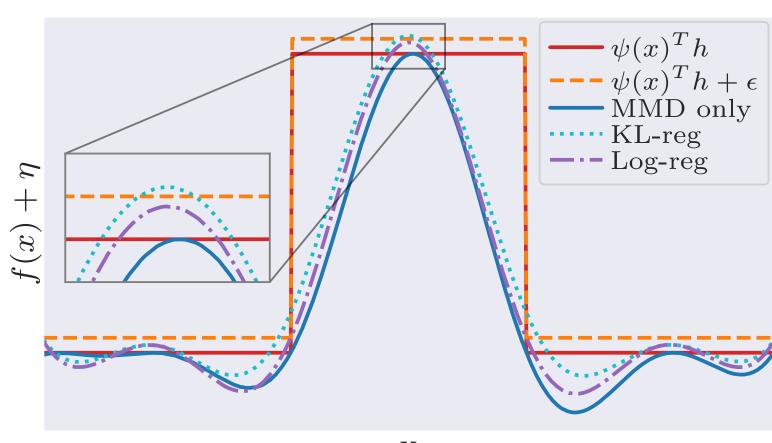
Entropy regularization Infinite constraint → soft-constraint

$$\inf_{\theta, \mathbf{Q} \in \mathcal{P}} \frac{1}{2} \operatorname{MMD}^{2}(\mathbf{Q}, \hat{\mathbf{P}}) + \lambda D_{\phi}(\mathbf{Q} \| \omega) \text{ s.t. } \mathbb{E}_{\mathbf{Q}} \left[\psi(X; \theta)^{T} h(Z) \right] = 0$$

results in an unconstrained dual

$$\mathbb{E}_{\hat{P}_n}[f_0 + f(X, Z)] - \frac{1}{2} \|f\|_{\mathscr{F}}^2 - \mathbb{E}_{\omega} \left[\varphi_{\epsilon}^* \left(f_0 + f(X, Z) - \psi(X; \theta)^T h(Z) \right) \right]$$





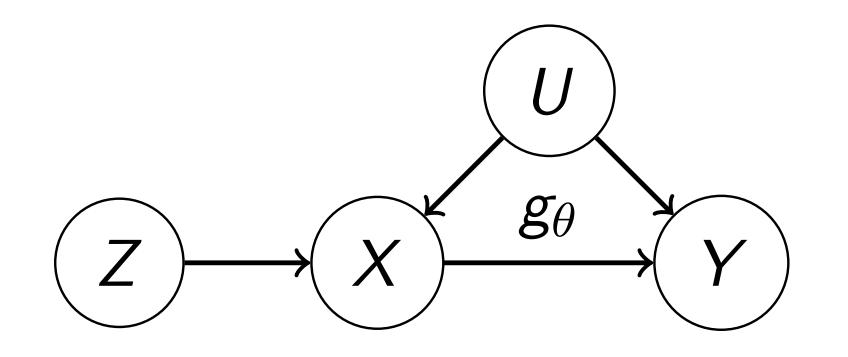
soft cons.
$$\phi_{\text{KL}}^*(t) = \exp(t)$$

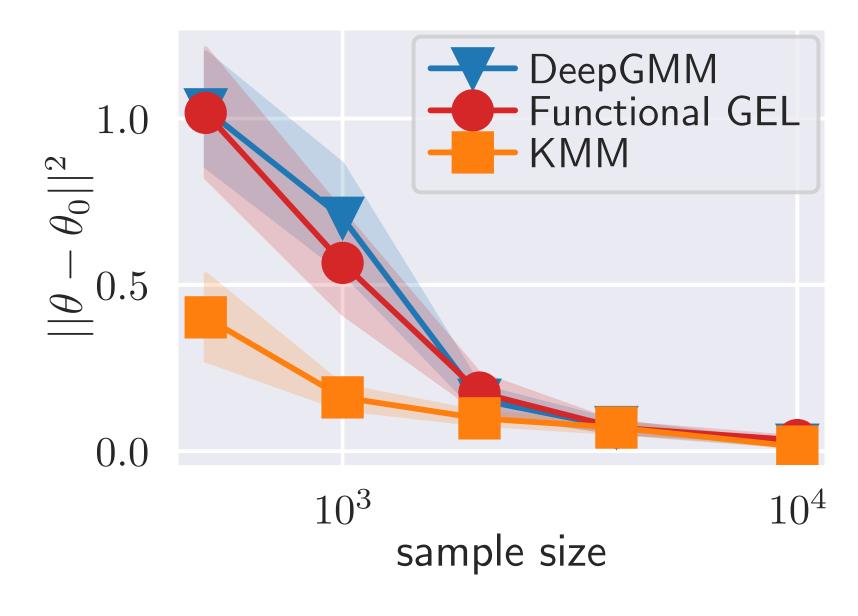
log-barrier $\phi_{\log}^*(t) = -\log(1-t)$

Kernel MoM: Nonlinear Instrumental Variable Regression

$$\begin{split} Y &:= g(X;\theta_0) + \nu(U) + \epsilon_1 \\ X &:= \eta(Z) + \mu(U) + \epsilon_2 \quad , \\ Z &\sim P_Z, \quad \epsilon_{1/2} \sim \mathcal{N}(0,\sigma) \\ g(x;\theta) \text{ is nonlinear in both } x,\theta. \end{split}$$

Takeaway. (Strong) structured distribution shifts (e.g., causal confounding) can be accounted for using the Kernel MoM + CMR, but not (joint) DRO, adversarial robustness, ...





Force-balance of Kernel MoM

Lagrangian:
$$\sup_{\gamma \in \mathbb{R}, h \in \mathcal{H}} \inf_{\mathbf{Q}} \frac{1}{2} \operatorname{MMD}^{2}(\mathbf{Q}, \hat{\mathbf{P}}) + \gamma \cdot \mathbb{E}_{\mathbf{Q}} \left[\left(Y - g_{\theta}(X) \right)^{T} h(Z) \right]$$

Minimizing movement scheme (MMS) in MMD $\inf_{\mu \in \mathscr{P}} F(\mu) + \frac{1}{2\gamma} \text{MMD}^2(\mu, \mu^k)$

Force balance using function approximation, e.g., kernel functions

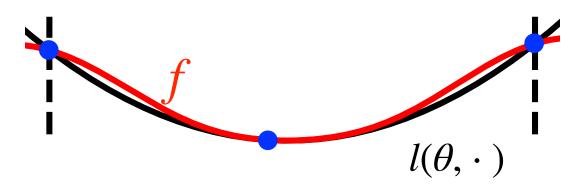
$$-DF = f + f_0, \ f = \frac{1}{\tau} \sum_{i=1}^{n} \alpha_i k([x_i, y_i, z_i], \cdot) \in \mathcal{H}, f_0 \in \mathbb{R}$$

Since $DF = (Y - g_{\theta}(X))^T h(Z)$, the optimal force function approximates the moment function

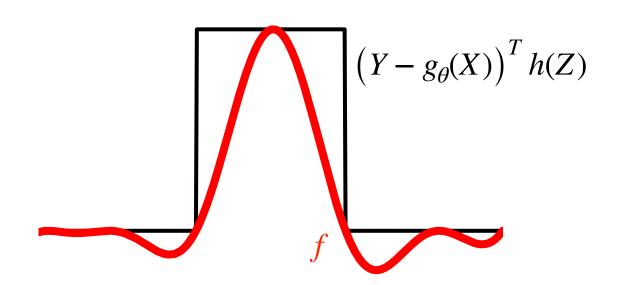
$$f+f_0=\left(Y-g_{\theta}(X)\right)^Th(Z)$$
 a.e.

Summary

- We exploited explicitly parametrized dual force functions for robust learning under joint and structured distribution shifts. This is inspired by generalized force in gradient flows, optimal transport, and mechanics.
- The gradient flow force-balance eqns give insights for constructing robust learning algorithms.
 - Kernel DRO: force gives the robustified surrogate loss



Kernel MoM: force gives the robustified moment function



This talk is mainly based on:

- I. **Z**., Jitkrittum, W., Diehl, M. & Schölkopf, B. Kernel Distributionally Robust Optimization. AISTATS 2021
- 2. Kremer, H., Nemmour, Y., Schölkopf, B. & **Z**. Estimation Beyond Data Reweighting: Kernel Method of Moments. ICML 2023

slides & code available: jj-zhu.github.io

Postdoc position opening in Berlin: datadriven dynamics modeling for medical imaging. Contact for info.