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Motivation & Introduction
Kernel Methods for Robust Learning under Distribution Shift



Motivation: Generative Adversarial Nets
Generative models. 

  
Generative models 

 

Here,  is the distribution over the generated data  
where  is sampled from a simple distribution such as .
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Figure credit: Z., W. Jitkrittum, internet meme 

Comparing two distributions 

 is a (dis-)similarity measure on the 
space of probability distributions.
𝒟
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Motivation: Langevin Monte-Carlo
Inference as measure optimization 

Given density up to a constant  
Generate samples from  (or estimate  for some )


.


Monte-Carlo Sampling via Langevin SDE 




where ,  is the step size. The state distribution 
 converges to . -particle approximation results in the 

noisy SGD in optimization. This dynamics is equivalent to the 
PDE gradient flow in the Wasserstein space [Otto 96].

π(x) ∝ exp(−V(x))
π 𝔼πψ(X) ψ
inf

μ∈ℳ
𝒟KL(μ∥π)

Xk+1 = Xk − ∇V(Xk) ⋅ τ + 2τΔZk

ΔZk ∼ N(0,1) τ
XT ∼ μT π N



Motivation: Structured Distribution Shift 
Causal Confounding

Causal confounding can lead to much stronger distribution shifts than those 
considered in (joint) distribution shift! 


: Smoking, : Cancer, : Lifestyle





Take into account genetic predisposition for nicotine addiction 


To estimate  robustly, we use conditional moment restriction 

X Y U

Y := gθ(X) + ϵU, 𝔼[ϵU] = 0, but 𝔼[ϵU |X] ≠ 0
⟹ gθ(x) ≠ 𝔼[Y |X = x]

Z

gθ
𝔼[ϵU |Z] = 𝔼[Y − gθ(X) |Z] = 0 ℙZ-a.s.

Learning Under Structured Distribution Shifts

Structured Distribution Shift: Confounding

(Joint) DRO mostly robustifies against finite-sample errors
! Confounding can lead to much stronger distribution shifts!

X : Smoking, Y : Cancer, U: Lifestyle

X Y

U

g✓

Y := g✓(X ) + ✏U , E[✏U ] = 0, but E[✏U |X ] 6= 0
=) g✓(x) 6= E[Y |X = x ]

Take into account genetic predisposition for nicotine addiction Z

Z X Y

U

g✓

E[✏U |Z ] = E[Y � g✓(X )|Z ] = 0 PZ -a.s.

Conditional moment restriction
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Motivation & Introduction
Kernel Methods for Robust Learning under Distribution Shift



Distributional robustness, but what kind?

Figure credit: The Princess Bride, 
a bedside story by your grandpa 



 


• “Robust” under statistical fluctuation





• Not robust under data distribution shifts, 
when 

min
θ

1
N

N

∑
i=1

l(θ, ξi), ξi ∼ P0

𝔼P0
l( ̂θ, ξ) ≤

1
N

N

∑
i=1

l( ̂θ, ξi) + 𝒪(
1

N
)

Q ( ≠ P0)

Empirical Risk Minimization

δξi

̂PN :=
1
N

N

∑
i=1

δξi
⇒ P0 ≠ Q

Distributionally Robust Optimization (DRO)
min

θ
sup

Q∈ℳ
𝔼Ql(θ, ξ)

From Statistical Learning to Distributionally Robust Learning

Worst-case distribution  within the ambiguity set  
[Delage & Ye 2010] in certain geometry. 


Why study new geometry? 
New geometries leading to new fields of research and 
breakthroughs: 
Information geometry [S. Amari et al.] e.g. descent in 
Fisher-Rao geometry

Wasserstein Gradient flow [F. Otto et al.] e.g. Fokker-
Planck equation as Wasserstein flow

Q ℳ

Figure credit: H. Kremer

Distrib. Shift



Integral Prob. MetricsOptimal Transport
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-divergencesϕ

p-Wasserstein Kernel MMD

Wasserstein- 
Fisher-Rao

Information Divergence

Bregman divergences

Total Variation

Figure credit: J. Zhu



Background: “Kernel Geometry”

How does the MMD behave?
MMD with a broad kernel:
MMD P Q sup f 1 EPf X EQf Y .

MMD=1.8

23/34

Definition. Kernel Maximum-Mean Discrepancy (MMD) 
associated with (PSD) kernel  (e.g., )





 is a (simple) metric space.

Dual formulation as an integral probability metric. 

 

 is the reproducing kernel Hilbert space  (RKHS), 
which satisfies ,  

 is the canonical feature of .

k k(x, x′ ) := e−|x−x′ |2/σ

MMD(P, Q) := ∫ k(x, ⋅ )dP−∫ k(x, ⋅ )dQ
ℋ

.

(Prob(ℝd), MMD)

MMD(P, Q) = sup
∥f∥ℋ≤1 ∫ f d(P − Q)

ℋ ℋ
f(x) = ⟨ f, ϕ(x)⟩ℋ, ∀f ∈ ℋ, x ∈ 𝒳

ϕ(x) := k(x, ⋅ ) ℋ

MMD(P, Q)}

Figure credit: W. Jitkrittum, J. Zhu



Previous work: Kernel DRO

Kernel DRO Theorem (simplified). [Z. et al. 2021] 
DRO problem is equivalent to the dual kernel 
machine learning problem, i.e., (DRO)=(K). 
 

(K) min
θ,f∈ℋ

1
N

N

∑
i=1

f(ξi) + ϵ∥f∥ℋ subject to l(θ, ⋅ ) ≤ f

(DRO) min
θ

sup
MMD(Q, ̂P)≤ϵ

𝔼Ql(θ, ξ)

Geometric intuition: dual kernel function f as robust 
surrogate losses (flatten the curve) 

 

f

l(θ, ⋅ ) l(θ, ⋅ )

f

Primal DRO (not solvable as it is) Example. Robust least squares  
[El Ghaoui Lebret ’97]

minimize l(θ, ξ) := ∥A(ξ) ⋅ θ − b∥2
2

Given historical samples ξ1, ξ2, …, ξN

(a) Robust least squares loss (b) Geometric interpretation

Figure 3: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain ✓ ⇤ and tested it on a test dataset
of 500 samples. We then vary the perturbation � from 0 to 4. (b) (red) is the dual optimal solution
f⇤

0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
bars the empirical distribution. We can observe that f⇤

0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.

4 Numerical studies227

This section demonstrates the theoretical insights of K-DRO in action. It is not a benchmark of228

state-of-art performances. See the appendix for more results. The code will be available online229

4.1 Distributionally robust solution to uncertain least squares230

We first consider a robust least squares problem adapted from [17], which demonstrated an im-231

portant application of RO to statistical learning historically. (See also [9, Ch. 6.4].) The task232

is to minimize the objective kA✓ � bk22 w.r.t. ✓. A is modeled by A(⇠) = A0 + ⇠A1, where233

⇠ 2 X is uncertain, X = [�1, 1], and A0, A1 2 R10⇥10, b 2 R10 are given. We compare234

K-DRO against using (a) empirical risk minimization (ERM; also known as sample average ap-235

proximation) that minimizes 1
N

PN
i=1 kA(⇠i) ✓ � bk22, (b) worst-case RO via SDP from [17]. We236

consider a data-driven setting with given samples {⇠i}Ni=1. We formulate the K-DRO problem as237

min✓ maxP2P,µ2C E⇠⇠P kA(⇠) ✓� bk22 subject to
R
�dP = µ, where we choose the uncertainty238

set to be C = {µ : kµ� µP̂ kH  ✏}, where µP̂ =
PN

i=1
1
N �(⇠i).239

Empirical samples {⇠i}Ni=1(N = 10) are generated uniformly from [�0.5, 0.5]. We then apply K-240

DRO formulation (10). To test the solution, we create a distribution shift by generating test samples241

from [�0.5 · (1+�), 0.5 · (1+�)], where � is a perturbation varying within [0, 4]. Figure 3a shows242

this comparison. As the perturbation increases, ERM quickly lost robustness. On the other hand, RO243

is the most robust with the trade-off of being conservative. As expected, K-DRO achieves some level244

of optimality while retaining robustness. We then ran K-DRO with fewer empirical samples (N = 5)245

to show the geometric interpretations. We plot the optimal dual solution f⇤

0 + f⇤ in Figure 3b.246

Recall it is an over-estimator of the loss l(✓, ·). We solve (7) to obtain a worst-case distribution P ⇤.247

Comparing P ⇤ with P̂ , we can observe the adversarial behavior of the worst-case distribution. See248

the caption for more description.249

4.2 Distributionally robust classification250

We now show how kernel-DRO can be applied to train a classification model g✓ : x 7! y. We consider251

a two-dimensional (x 2 R2), two-class classification problem (y 2 {�1, 1}). Samples from class 1252

(red) are drawn from p(x|y = 1) = N ((5, 0)>, I), while that from class -1 (blue) are generated from253

N
�
(3, 1)>, diag(1/2, 2)

�
. The class prior probability is uniform i.e., p(y = �1) = p(y = 1) = 1/2.254

The training samples are shown in Figure 4a. The model is trained by solving K-DRO (10), where255

⇠i := [xi, yi], with the hinge loss l(✓, ⇠) := max(0, 1� g✓(x)y). We use a product kernel of the form256

k((x, y), (x0, y0)) = kX(x, x0)kY (y, y0), where both kX , kY are Gaussian kernels. For simplicity,257

we use a linear classifier g✓(x) := sign(m>x+ c) where ✓ := (m, c).258
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     f

Robustifying with DRO
f as witness (test) function

What if ?f ≡ c ∈ ℝ



Experiments of robustness under distribution shifts
Certified adversarially robust deep 
learning (Classify the presence of glasses 
using a 20-layer DNN [Sinha et al. 2017; Z et al. 2022]

4.2 Robust Learning with ARKS

Our risk minimization scheme (11) can be straightforwardly used with stochastic gradient based
method for large-scale learning, e.g., with DNNs. We detail the training procedure in Algorithm 1.
Note that Step 3 of Algorithm 1 can be seen as a proximal algorithm, cf. [55]. ARKS (11) can also

Algorithm 1: Adversarially robust kernel smoothing (ARKS)
1: input: data sampler, initial iterate ✓0

2: for k = 0, 1, 2, . . . , T do
3: sample {⇠k} and find u

⇤

k
by maximizing l(✓k, u)k(u, ⇠k) w.r.t. u

4: update ✓ by stochastic gradient descent using estimate r✓l(✓k, u⇤

k
)

5: output: approximate solution ✓
⇤ := ✓

T

be interpreted as a form of adversarial training [38, 81, 27]: for each ⇠i, the inner maximization
problem of (11) looks for an adversarial example u that hurts the learner the most. In the case of
Gaussian RBF kernel, it is an exercise (we provide this proof in the appendix) to show that the inner
maximization objective in (11) has favorable convexity structures for suitable choices of �. The main
intuition is that, by multiplying the loss l(u) by the kernel function k(u, x) which is strongly concave
near its peak, the resulting function is consequently locally concave too. We illustrate this intuition in
Figure 3 (right). A thorough analysis for various other kernels choices is out of our current scope.
Next, we empirically demonstrate ARKS in Section 5 that ARKS can easily work with DNN models,
which is a limitation of typical existing DRO reformulation techniques.

5 Numerical Experiments

5.1 Robust Learning under Adversarial Perturbations

In this section, we present empirical evaluations of our robust learning algorithm. We compare the
following algorithms when applicable: (A) ARKS Algorithm 1, (B) empirical risk minimization
(ERM), (C) WRM [21], (D) (worst-case) robust optimization [7, 68] (in the appendix). Both ARKS
and WRM have one hyper-parameter: bandwidth � for ARKS and Lagrangian relaxation coefficient
y for WRM. We do not test classical Wasserstein DRO algorithms, e.g., [48, 85, 64], since they
cannot be applied to our test settings with general machine losses and DNN models. We further note
that ARKS (11) is a general robustification technique that can be applied to tasks beyond supervised
learning and adversarial training.

Figure 1: PGD attack with respect to k.k1 on the Fashion-MNIST (left) and CIFAR-10 (right)
datasets. We show the classification error on perturbed test images versus the allowed magnitude of
the adversarial perturbation �. AKRS and WRM exhibit similar adversarial performance profiles;
AKRS becomes more robust as the kernel width � increases, while WRM improves with a lower
Lagrangian penalty y. For all algorithms, we report the mean and standard deviation across 10
random seeds.
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dynamical systems [Zhong & Z 2023]

Toy example. Uncertain least squares 
[El Ghaoui Lebret ’97, Z et al. 2021]

minimize l(θ, ξ) := ∥A(ξ) ⋅ θ − b∥2
2

Given historical samples ξ1, ξ2, …, ξN

(a) Robust least squares loss (b) Geometric interpretation

Figure 3: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain ✓ ⇤ and tested it on a test dataset
of 500 samples. We then vary the perturbation � from 0 to 4. (b) (red) is the dual optimal solution
f⇤

0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
bars the empirical distribution. We can observe that f⇤

0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.
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state-of-art performances. See the appendix for more results. The code will be available online229
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(test distribution)

Environment Regular Robust

Original 399.7 ± 0.1 400.0 ± 0.0

Easier environments
Light 400.0 ± 0.0 400.0 ± 0.0
Long 400.0 ± 0.0 400.0 ± 0.0
Soft g 400.0 ± 0.0 400.0 ± 0.0

Harder environments
Heavy 150.1 ± 4.7 334.0 ± 3.7
Short 245.2 ± 4.8 400.0 ± 0.0

Strong g 189.8 ± 2.3 398.5 ± 0.3

Table 1. Episode length over 1000 trials
(mean ± standard error)

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

Figure 8. Episode lengths during training.
The environment caps episodes to 400 steps.

term in the update (26) and, after performing the update, round st+1 as usual, or we can perform
minimization directly over the discretized covering. In the former case, since the update (26)
simply modifies the state-action transitions (independent of Q), standard results on convergence
for tabular Q-learning (e.g. Szepesvári and Littman [62]) apply under these adversarial dynamics.

We test our adversarial training procedure in the cart-pole environment, where the goal is to
balance a pole on a cart by moving the cart left or right. The environment caps episode lengths
to 400 steps and ends the episode prematurely if the pole falls too far from the vertical or the cart
translates too far from its origin. We use reward r(β) := e−|β| for the angle β of the pole from
the vertical. We use a tabular representation for Q with 30 discretized states for β and 15 for its
time-derivative β̇ (we perform the update (26) without the Q-dependent term). The action space
is binary: push the cart left or right with a fixed force. Due to the nonstationary, policy-dependent
radius for the Wasserstein ball, an analogous ε for the fast-gradient method (or other variants) is
not well-defined. Thus, we only compare with an agent trained on the nominal MDP. We test both
models with perturbations to the physical parameters: we shrink/magnify the pole’s mass by 2,
the pole’s length by 2, and the strength of gravity g by 5. The system’s dynamics are such that the
heavy, short, and strong-gravity cases are more unstable than the original environment, whereas
their counterparts are less unstable.

Table 1 shows performance of trained models over the original and all perturbed MDPs. Both
models perform similarly over easier environments, but the robust model greatly outperforms in
harder environments. Interestingly, as shown in Figure 5, the robust model also learns more effi-
ciently than the nominal model in the original MDP. We hypothesize that a potential side-effect of
robustness is that adversarial perturbations encourage better exploration of the environment.

6 Discussion and future work

Explicit distributional robustness of the form (5) is intractable except in limited cases. We provide
a principled method for efficiently guaranteeing distributional robustness with a simple form of
adversarial data perturbation. Using only assumptions about the smoothness of the loss function
#, we prove that our method enjoys strong statistical guarantees and fast optimization rates for a
large class of problems. The NP-hardness of certifying robustness for ReLU networks, coupled with
our empirical success and theoretical certificates for smooth networks in deep learning, suggest that

20

Robust reinforcement learning 
[Sinha et al. 2017]



Entropy-MMD & Conditional independence
To relax the semi-infinite constraint in DRO reformulations





Dual reformulation. Adapted from [Kremer et al., Z. 2023] 




soft cons. , log-barrier 


Example (Causality). Robustness against structured 
distribution shifts instead of (joint-)DRO. [Kremer et al., Z. 
2023]. Estimating  via conditional moment restriction





Empirical likelihood formulation + similar techniques: ,


min
θ

sup
MMD(Q, ̂P)+λDϕ(Q∥ω)≤ϵ

𝔼Ql(θ, ξ)

inf
θ,f∈ℋ {𝔼 ̂P f + ϵ∥f∥ℋ + λ𝔼ωϕ* ( −f + l

λ )}
ϕ*KL(t) = exp (t) ϕ*log(t) = − log (1 − t)

gθ

𝔼[Y − gθ(X) |Z] = 0 ℙZ-a.s.

∀h ∈ ℋ

inf
Q

1
2

MMD2(Q, ̂P) + λDϕ(Q∥ω)  s.t.  𝔼Q [(Y − gθ(X))T h(Z)] = 0
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X := ⌘(Z ) + µ(U) + ✏2
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 nonlinear in uncertainty.


Idea: Rewrite  using the indicator function (or CVaR)





Apply the Kernel DRO Theorem and algorithm, informally





with large probability. The big-O term depends on the class of . 

min
x∈𝒳

cT x s . t . inf
D(P, ̂PN)≤ϵ

P( f(x, ξ) ≤ 0) ≥ 1 − α

f(x, ξ)

𝔼

sup
D(P, ̂PN)≤ϵ

𝔼P[𝕀( f(x, ξ) ≥ 0))] ≤ α

P (f(x, ξ) ≤ 𝒪(
1

N
)) ≥ 1 − α,

f

°3 °2 °1 0 1 2 3
ª

°0.25
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1.00 f(x, ª)
g(ª)
1(f(x, ª))
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More ML problems we can use dual functions 
for measure optimization

Primal-dual optimization problems





Examples in ML [Dvurechensky, Z.]

Generative models 




Distributionally robust optimization 




Wasserstein barycenter 

 

inf
μ∈ℳ

F(μ) = sup
f∈ℱ

ℰ( f )

inf
Gθ

𝔼Z𝒟(P, Gθ(Z)) = inf
μ∈ℳ

sup
f∈ℱ{∫ f(x)dP(x) − 𝔼θ∼μ ∫ f(gθ(z))dQ(z)}

inf
θ

sup
MMD(μ, ̂μ)≤ϵ

𝔼μ[l(θ; x)] = inf
θ∈ℝd,f∈ℋ

sup
μ∈ℳ

𝔼μ(l − f ) +
1
N

N

∑
i=1

f(xi) + ϵ∥f∥ℋ.

min
μ∈ℳ

n

∑
i=1

αi [Wp(μ, νi)] = min
μ∈ℳ

n

∑
i=1

αi sup
fi∈Ψc

{∫ f c
i dμ + ∫ fidνi},



Summary

• There are many important uses of the dual (kernel) 
function for measure optimization: causal inference, 
barycenter problems, conditional moments, (robust) 
control and RL


• However, optimization over measures is a mathematically 
non-trivial topic. We will now learn the optimization 
perspective of gradient flow
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