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Euclidean gradient descent

Optimization in Rd

min
x∈Rd

f (x).

We optimize using the gradient descent algorithm

xk+1 = xk − τk · ∇f (xk)

using the “variational principle”

xk+1 ∈ argminx f (xk) + 〈∇f (xk), x − xk〉+ 1
2τk
‖x − xk‖22



From GD to Mirror descent

We define the Bregman divergence associated with φ as

Dφ(x , y) = φ(x)− φ(y)−∇φ(y)>(x − y).

Mirror descent update (with quadratic term replaced by Bregman)

xk+1 = argminx f (xk) + 〈∇f (xk), x − xk〉+ 1
τk

Dφ(x , xk)



Example of MD: Euclidean norm

Mirror map φ(x) = 1
2‖x‖

2
2.

The resulting mirror descent algorithm

xk+1 = argminx f (xk) + 〈∇f (xk), x − xk〉+ 1
2τk
‖x − xk‖22.

This is equivalent to gradient descent with stepsize τk .



Example of MD: negative entropy

Mirror map φ(x) =
∑d

i=1 x(i) log x(i). The resulting Bregman divergence is the
KL-divergence Dφ(x , y) =

∑d
i=1 x(i) log x(i)

y(i) .

If we restrict x to a (discrete probability) simplex 1>x = 1, then the MD update

xk+1 = argmin1>x=1 f (xk) + 〈∇f (xk), x − xk〉+ 1
τk

Dφ(x , xk)

has the closed-form as exponentiated gradient

x(i)k+1 = x(i)ke−τkgk∑n
j=1 x(j)ke−τkgk

, i = 1, 2, . . . , n



Euclidean gradient descent as discretization of ODE gradient flow

xk+1 ∈ argminx 〈∇f (xk), x〉Ed + 1
2τ ‖x − xk‖2

is the explicit Euler scheme for the ODE (for simplicity, we take constant time step τ)

ẋ(t) = −∇f (x(t)).

The solution x(t) is an ODE gradient flow and the ODE is the gradient flow equation
(GFE). In GF terms, the solution x(t) is also called a curve of maximal slope (steepest
descent).



Gradient flow dynamics: (nonlinear) ODE

ẋ(t) = −∇f (x(t))

ẋ(t) ∈ X provides the rate (or velocity) (we can see)

−∇f (x(t)) ∈ X ∗ provides the (thermodynamic) force (can’t see; shadow price)

The equation should be written in the force-balance form

IR ẋ(t) = −∇f (x(t)) ∈ X ∗, IR : X → X ∗ is the Riesz isomorphism.

If, in the non-Euclidean setting, X � X ∗, then we have both force space and rate space
GFE.



Energy dissipation balance (equality)

Fenchel-Young For convex ψ, (proof is trivial; a2+b2

2 ≥ ab)

ψ(x) + ψ∗(ξ) ≥ 〈x , ξ〉,∀(x , ξ) ∈ X × X ∗.

Furthermore, if ψ is proper, lsc, and convex, (x∗, ξ∗) is optimal.

By Fenchel(-Young) duality and optimality

d
dt f (x(t)) =X∗ 〈∇f (x(t)), ẋ〉X = −‖∇f (x(t))‖2 = −

(1
2‖ẋ‖

2 + 1
2‖∇f (x)‖2

)

Energy does not necessarily decrease along non-solutions, i.e., only inequality

d
dt f (z(t)) ≥ −

(1
2‖ż‖

2 + 1
2‖∇f (z(t))‖2

)
.



Evolutionary variational inequality (EVI)λ: ODE
Suppose the energy functional f is proper, upper semicontinuous, λ-convex for some
λ ∈ R , i.e., f can be non-convex, ∀s ∈ [0, 1],∀u0, u1 ∈ Rd

f ((1− s)u0 + su1) ≤ (1− s)f (u0) + sf (u1)− λ

2 s(1− s)‖u0 − u1‖2.

and has compact sublevel sets. Then for any initial condition in the x(0) ∈ Rd , there
exists a unique solution at time t, x(t) ∈ Rd .

Furthermore, the ODE solution x(t) satisfies (EVI)λ, for t, s ∈ [0,T ].
1
2‖x(t)− ν‖2 ≤ 1

2e−λ(t−s)‖x(s)− ν‖2 + Mλ(t − s)(f (ν)− f (x(t))),

Mλ(τ) =
∫ τ

0
e−λ(τ−s) ds, ∀ν ∈ dom(F ) ⊂ Rd .

Using (EVI)λ, we can effortlessly extract convergence results. Suppose a minimizer of
the energy exists x∗ ∈ arginfx∈Rd f (x), we set ν = x∗, s = 0 in (EVI)λ

‖x(t)− x∗‖2 ≤ e−λt‖x(0)− x∗‖2 + 2Mλ(t − s)
(

inf
x∈Rd

f (x)− f (x(t))
)

≤ e−λt‖x(0)− x∗‖2

yielding an exponential convergence in time if the energy is convex.



Gradient flow convergence without (strong) convexity: ODE

Impose the Polyak-Łojasiewicz inequality, suppose an optimizing x∗ exists

‖∇f (x(t))‖2 ≥ c · (f (x)− f (x∗)).

Starting from EDB

d
dt f (x(t)) = −‖∇f (x(t))‖2 ≤ −c · (f (x)− f (x∗)) ≤ 0,

implies exponential convergence of the gradient flow

f (x(t))− f (x∗) ≤ e−c·t (f (x(0))− f (x∗)) .

We can also recover the log-Sobolev inequality by setting the energy f as the
KL-divergence.



Optimization over probability measures

inf
µ∈P

F (µ)

I P: set of probability measures; the probability “simplex”
I We will work with two types of (probability) measures

dµ(x) = ρ(x) dx , µ =
∑
i∈I

αiδxi α ∈ ∆

I M+ ⊇ P: non-negative measures; “cone”
I F : objective function; “energy”



Optimization over probability measures

What can’t we just do gradient descent?

µk+1 = µk − τk · ∇F (µk)

I ∇F (µk) is undefined
I µk+1 must be a probability measure; care needs to be taken
I What can we do instead?



A variational approach

Recall the “variational” formulation of gradient descent

xk+1 ∈ argminx 〈∇f (xk), x〉Rd + 1
2τ ‖x − xk‖2 ⇐⇒ xk+1 = xk − τ · ∇f (xk)

for a suitable τ . This is the variational principle.

Can we do the same for probability measures?

µk+1 ∈ arginfµ∈P F (µ) + 1
τ
D2(µ, µk)

for some “distance” measure D. This is sometimes called the Minimizing Movement
Scheme (MMS).



Variational approach and MMS

µk+1 ∈ arginfµ∈P F (µ) + 1
τ
D(µ, µk)

We must specify the important ingredients

Energy :F
Geometry :D

The merit of the right gradient flow formulation of a dissipative evolution equation is
that it separates energetics and kinetics: The energetics endow the state space with a
functional, the kinetics endow the state space with a (Riemannian) geometry via the
metric tensor. [Otto 2001]



Geometry: Wasserstein distance
Definition. The p-Wasserstein distance** between probability measures P,Q on Rd

(with p-th finite moments, p ≥ 1) is defined through the following Kantorovich problem

W p
p (P,Q) := inf

{∫
|x − y |pdΠ(x , y)

∣∣∣π(1)
# Π = P, π(2)

# Π = Q
}

Dual Kantorovich problem

W p
p (P,Q) = sup

{∫
ψ1(x) dP(x) +

∫
ψ2(y) dQ(y)

∣∣∣ψ1(x) + ψ2(y) ≤ |x − y |p
}

Dynamic formulation: Benamou–Brenier

W 2
2 (P,Q) = inf

{∫ 1

0

∫
|vt |2dµtdt

∣∣∣µ0 = P, µ1 = Q, d
dt µt + div(vtµt) = 0

}

Entropy regularization (Sinkhorn divergence)

inf
Π

∫
c(x , y)dΠ(x , y) + λDφ(Π‖P ⊗ Q)



Geometry: (Csizsar) φ-divergence

Relative entropy is defined as

Dφ(µ|ν) =


∫
φ
(

dµ
dν

)
dν if µ� ν

+∞ otherwise

We can choose the φ functions from the following table to obtain: identity (trivial),
Kullback, Hellinger, χ2

(table: J. Zhu)



Preliminary: first variation over measures and subdifferentials

The first variation of a functional F at µ ∈ P is defined as a function δF
δµ [µ]

d
dεF (µ+ ε · v)|ε=0 =

∫
δF
δµ

[µ](x) dv(x)

for any perturbation in measure v such that µ+ ε · v ∈ P.

The variational principle
d
dεF (µ+ ε · v)|ε=0 = 0

for all variation v , states the “optimality condition”.

We also summon the Fréchet differential on a Banach space X as a set in the dual space

DF := {ξ ∈ X ∗ | F (µ) ≥ F (ν) + 〈ξ, µ− ν〉X + o (‖µ− ν‖X ) for µ→ ν}



Three types of energy functionals

Suppose µ(x) = ρ(x) dx WLOG,

F(%) =
∫

f (%(x))dx , V(%) =
∫

V (x)d%, W(%) = 1
2

∫∫
W (x − y)d%(x)d%(y)

We calculate the first variations (by following the definition)

δF
δ%

(%) = f ′(%), δV
δ%

(%) = V , δW
δ%

(%) = W ∗ %



Back to (discrete-time) gradient flow

Optimization
inf

µ∈P
F (µ)

Recall MMS
µk+1 ∈ arginfµ∈P F (µ) + 1

τ
D(µ, µk)

We have specified the important ingredients

Energy :F , Geometry :D

We can construct a concrete instance of MMS for gradient flow by “mix-and-match”.



Wasserstein-MMS: Jordan-Kinderlehrer-Otto (JKO) scheme

a.k.a. Minimizing Movement Scheme (MMS):

µk+1 ∈ inf
µ∈P

F (µ) + 1
2τW 2

2 (µ, µk)

This formulation is very general in the sense that it includes nonlinear-in-measure F .
We should think of this as the gradient descent algorithm for prob. measures.



Otto’s Gradient flow equation in the Wasserstein space

µk+1 ∈ inf
µ∈P

F (µ) + 1
2τW 2

2 (µ, µk)

Continuous-time limit τ → 0, we have (non-trivially) the gradient flow equation (GFE)

∂tµ−∇ · (µ∇
δF
δµ

[µ]) = 0

which describes the dissipation of energy F in (Prob(X̄ ),W2). [Otto et al 90s-2000s,
Ambrosio 2005]

In a different flavor, we can write it just like ODE ẋ = −∇f (x) (in the rate form; primal
vs. dual force-balance)

∂tµ = −KOtto(µ) DF = ∇ · (µ∇DF ).



Example: WGF of (Boltzmann/KL/relative) Entropy
nonlinear (in measure) energy (e.g., in variational inference)

F (µ) = DKL(µ‖π) =
∫

log(δµ
δπ

(x))ρ(x) dx

δF
δµ

[µ] = log ρ− log π,

density ρ := dµ
dL The Fokker-Planck equation as the Wasserstein gradient flow [Otto

et al. 90s-2000s]
∂tµ= ∇ ·

(
µ∇δF

δµ
[µ]
)

= ∇ · (µ(∇ log ρ−∇ log π))
= ∆ρ+∇ · (ρ∇ log π)

I If π is the Lebesgue measure, we obtain the heat equation ∂tµ = ∆µ
I Note: The force field δF

δµ [µ] and the “score” ∇ δF
δµ [µ] are not accessible if µ is

atomic. =⇒ “score-matching”. . .



Application: sampling and variational inference
Suppose π ∝ e−V (x), but with unknown normalizing constant, we want

inf
µ∈P

DKL(µ‖π).

Using the WGF, we have the Fokker-Planck equation

∂tµ = ∇ · (µ(∇ log ρ(x)−∇V (x)))

Suppose there is a single atom whose state is Xt (R.V.), it is pushed towards the
velocity field

∇ log ρ(Xt)−∇V (Xt)

We can construct gradient descent

Xt+1 = Xt + τ ·
(
∇ log ρ(Xt)−∇V (Xt)

)
Langevin Monte-Carlo forward-Euler discretization

Xt+1 = Xt − τ · ∇V (Xt) +
√
2τZ ,Z ∼ N(0, Id)



Application: (distributionally) robust learning with Otto’s WGF

We can use our WGF theory (invented 20yr ago; nothing new) to solve Wasserstein
DRO for robust learning (also adversarial robustness in [Sinha et al. 2017])

min
θ

sup
µ
Eµ l(θ, x)− γ ·W 2

2 (µ, µ̂N)

The inner measure-update step is gradient ascent

Xt+1 = Xt + τ∇l(θt ,Xt)

where τ = 1
2γ .Then the whole Wasserstein robust learning is simply gradient

descent-ascent (GDA).



Energy dissipation balance of WGF
Recall the ODE case

d
dt f (x(t)) = −

(1
2‖ẋ‖

2 + 1
2‖∇f (x)‖2

)
In (Prob(X̄ ),F ,W2), Fenchel(-Young) yields the Energy dissipation balance
(equality) [Ambrosio et al. 2007]

d
dt F (µ(t)) = −1

2 |µ
′|W2(t)2 − 1

2 |∇
−F |W2(µ(t))2

F (µ(t))− F (µ(s)) = −1
2

∫ t

s
|µ′|W2(r)2 + |∇−F |W2(µ(r))2 dr

I metric speed with velocity vt : |µ′|W2(t) =
√∫
|vt |2 dµ

I metric slope: |∇−F |W2(µ(t)) =
√∫
|∇ δF

δµ [µ] (x)|2 dµ

The velocity field can be identified as vt = −∇ δF
δµ [µ]. EDB can then be used as the

definition of gradient flows (curves of maximal slopes), even without GFE.

For (Boltzmann) entropy F (u) = ρ log ρ, EDB gives d
dt F (µ(t)) = −

∫
|∇ log ρ|2ρ dx



Evolutionary variational inequality (EVI)λ: Wasserstein GF

Under a few technical assumptions and the so-called λ-geodesic-convexity of the energy
F , if along a geodesic curve γ,

F (γ(s)) ≤ (1− s)F (γ(0)) + sF (γ(1))− λ

2 s(1− s)W 2
2 (γ(0), γ(1)), ∀s ∈ [0, 1].

Then, there exists unique gradient flow solution satisfies (EVI)λ, for .

1
2W 2

2 (µ(t), ν) ≤ 1
2e−λ(t−s)W 2

2 (µ(s), ν) + Mλ(t − s)(F (ν)− F (µ(t))),

∀ν ∈ dom(F),Mλ(τ) =
∫ τ

0
e−λ(τ−s) ds.

Set ν ∈ arginfµ F (µ), we have exponential convergence in-time and uniqueness of
gradient flow.



Thank you!
There are many other active research topics in GF for ML

I Gradient flow structure with kernel geometry [also some of my past / current works]
I Unbalanced transport and its gradient flow
I Applications: causal inference, mean-field NN, Nash equilibrium, offline RL, policy

optimization. . .
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