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Euclidean gradient descent

Optimization in RY
min f(x).
x€Rd ( )
We optimize using the gradient descent algorithm
Xk+1 = Xk — Tk * Vf(Xk)

using the “variational principle”

. 1
Xk41 € argming f(xk) + (VF(xk), x — xk) + EHX — x5



From GD to Mirror descent

We define the Bregman divergence associated with ¢ as

Dy(x,y) = ¢(x) — d(y) — Vo(y) (x — y).

Mirror descent update (with quadratic term replaced by Bregman)

1
Xkr1 = argmin, f(xk) + (VF(xk), x — xx) + T—D¢(X,xk)
K



Example of MD: Euclidean norm

Mirror map ¢(x) = 3||x|13.

The resulting mirror descent algorithm
. 1 2
Xk+1 = argmin, f(xx) + (VF(xk),x — xk) + EHX — xk|l5-

This is equivalent to gradient descent with stepsize 7.



Example of MD: negative entropy

Mirror map ¢(x) = 2%, x(i) log x(i). The resulting Bregman divergence is the

KL-divergence Dy(x,y) = 9 x(i) log %

If we restrict x to a (discrete probability) simplex 1" x = 1, then the MD update
: 1
Xk+1 = argmingt,—1 f(xk) + (VF(xk), x — xk) + T—de,(x,xk)

has the closed-form as exponentiated gradient

) B X(,‘)ke—Tkgk
X(I)k+1 - 7:1 X(j)kei‘rkgk’

=1,2,...,n



Euclidean gradient descent as discretization of ODE gradient flow

1
XK1 € argmin (V£ (x¥), x)ga + 2—||x — xK|2
T

is the explicit Euler scheme for the ODE (for simplicity, we take constant time step 7)
x(t) = =VF(x(t)).
The solution x(t) is an ODE gradient flow and the ODE is the gradient flow equation

(GFE). In GF terms, the solution x(t) is also called a curve of maximal slope (steepest
descent).



Gradient flow dynamics: (nonlinear) ODE

x(t) = =VI£(x(t))
x(t) € X provides the rate (or velocity) (we can see)
—Vf(x(t)) € X* provides the (thermodynamic) force (can't see; shadow price)
The equation should be written in the force-balance form

Irx(t) = =VF(x(t)) € X*, 1Ir:X — X is the Riesz isomorphism.

If, in the non-Euclidean setting, X 2 X*, then we have both force space and rate space
GFE.



Energy dissipation balance (equality)

Fenchel-Young For convex v, (proof is trivial; # > ab)

Y(x) +¥7(€) = (x,£),V(x,§) € X x X"
Furthermore, if ¢ is proper, Isc, and convex, (x*,&*) is optimal.
By Fenchel(-Young) duality and optimality

(1)) =x- (VA X)x = ~I VAP = = (G + SIVFGIP)

Energy does not necessarily decrease along non-solutions, i.e., only inequality

f(Z( ) = ( 1212 + *I!Vf(Z(t))H2)-



Evolutionary variational inequality (EVI),: ODE

Suppose the energy functional f is proper, upper semicontinuous, A-convex for some
AER, ie., f can be non-convex, Vs € [0, 1], Vup, u; € R
A
f((1—s)up+su1) < (1—s)f(up) + sf(u) — 55(1 —5)|Jup — w1 )?.

and has compact sublevel sets. Then for any initial condition in the x(0) € RY, there
exists a unique solution at time t, x(t) € R

Furthermore, the ODE solution x(t) satisfies (EVI),, for t,s € [0, T].

SIx(B) P < Se D x(s) vl + My( — $)(F() — F(x(2))),

My (1) = / (7=%) ds, Vv e dom(F) c RY.
Using (EVI),, we can effortlessly extract convergence results. Suppose a minimizer of
the energy exists x* € arginf, cpa f(x), we set v = x*,5 =0 in (EVI),

Ix(£) = x°IP < e x(0) — x°[P + 2My (e~ 5) i, £(x) ~ F(x()))

< e M|x(0) — x*?



Gradient flow convergence without (strong) convexity: ODE

Impose the Polyak-tojasiewicz inequality, suppose an optimizing x* exists
IVF(x(2))II? = - (F(x) — F(x*)).
Starting from EDB

%f(X(t)) = —|VF(x(0)? < —c - (f(x) - f(x*)) <0,

implies exponential convergence of the gradient flow
F(x(t)) — f(x*) < e (£(x(0)) — f(x7)).

We can also recover the log-Sobolev inequality by setting the energy f as the
KL-divergence.



Optimization over probability measures

inf F
Jnf, F(i)

> P: set of probability measures; the probability “simplex”
» We will work with two types of (probability) measures

dup(x) = p(x) dx, p= Za;éxl. ael
i€l

» MT D P: non-negative measures; “cone”
> F: objective function; “energy”



Optimization over probability measures

What can't we just do gradient descent?

W =k =T VF()

> VF(u¥) is undefined
» X1 must be a probability measure; care needs to be taken
» What can we do instead?



A variational approach

Recall the “variational” formulation of gradient descent
1
XKt € argmin, (VF(x¥), x)ga + 2—Hx —xM? = X1 =xk — 7 VF(x)
T

for a suitable 7. This is the variational principle.

Can we do the same for probability measures?

_ 1
pt € arginfep F(p) + —D*(1, 1)

for some “distance” measure D. This is sometimes called the Minimizing Movement
Scheme (MMS).



Variational approach and MMS

. 1
pkHt ¢ arginf,,cp F(1) + ;D(/%,Uk)
We must specify the important ingredients

Energy :F
Geometry ‘D

The merit of the right gradient flow formulation of a dissipative evolution equation is
that it separates energetics and kinetics: The energetics endow the state space with a
functional, the kinetics endow the state space with a (Riemannian) geometry via the

metric tensor. [Otto 2001]



Geometry: Wasserstein distance
Definition. The p-Wasserstein distance** between probability measures P, @ on R
(with p-th finite moments, p > 1) is defined through the following Kantorovich problem

Wz (P, Q) =inf { [ |x = ylPdn(x.p)| =0 = P, xPn - @}

Dual Kantorovich problem

WE(P, @) =sup { [ v1(x)aP(x) + [ v2(y)aQU)| 41(x) + valy) < Ix — yP}

Dynamic formulation: Benamou—Brenier

' d
WZ(P,Q) = inf {/0 /‘Vt‘zdﬂtdt ‘ po = P,u1 = Q, Tl + div(vepr) = 0}

Entropy regularization (Sinkhorn divergence)

in/c(x,y)dn(x,y) +AD,(N|P & Q)



Geometry: (Csizsar) ¢-divergence

Relative entropy is defined as

Dy(ulv) = {fgb(glﬁ) dvif p<v

+oo

otherwise

We can choose the ¢ functions from the following table to obtain: identity (trivial),

Kullback, Hellinger, x?

Table 1: Entropy functions, their correspondmg reverse entropy, and convex conjugates

Entropy f Reverse entropy r r*
0 ift=1 0 ift=1
t) = m=1Id t) = ry=1d
fua(®) {+oo otherwise fia ia(t) {+oo otherwise Tid
frL(t) =tlogt —t+1 fer(s)=e*—1 rgL(t) =t —1—logt riL(s) = —log (1 — s)

fult) = (Vi1

fi(s) =s/(L—s)

ru(t) = (Vi—1)°

fat)=(-1)°

Ta(s) = */4+s

re(t) =t —1)*/t

ri(s) = s/(1 — )
*(8)=2—y1—3s

(table: J. Zhu)



Preliminary: first variation over measures and subdifferentials

The first variation of a functional F at y € P is defined as a function %[u]

Pt e vleo= [ SE10) dv(x

for any perturbation in measure v such that y+¢-v € P.

The variational principle

d
—F € V)|le=0 =0
CF(i+ e V)lemo
for all variation v, states the “optimality condition”.

We also summon the Fréchet differential on a Banach space X as a set in the dual space

DF :={{e X" | F(u) = F(v) + (& p—v)x +o(llu —vlx) for p— v}



Three types of energy functionals

Suppose p(x) = p(x) dx WLOG,

o) = [ flebax, Vo) = [Veode, Wie) = [ Wix—y)dex)dely)

We calculate the first variations (by following the definition)

=1 =V, T)=Wre



Back to (discrete-time) gradient flow

Optimization

inf F
jnf, (1)

Recall MMS 1
pktl e arginf ,cp F(up) + ;D(/%,uk)
We have specified the important ingredients
Energy :F, Geometry ‘D

We can construct a concrete instance of MMS for gradient flow by “mix-and-match”.



Wasserstein-MMS: Jordan-Kinderlehrer-Otto (JKO) scheme

a.k.a. Minimizing Movement Scheme (MMS):
1
1 e inf F — W3 (p, i
pr € inf (1) + 5 Wa (s, 1)

This formulation is very general in the sense that it includes nonlinear-in-measure F.
We should think of this as the gradient descent algorithm for prob. measures.



Otto's Gradient flow equation in the Wasserstein space

1
k+1 inf F W2 k
prt € inf Fp) + o Wa (s i)
Continuous-time limit 7 — 0, we have (non-trivially) the gradient flow equation (GFE)
oF
Ot — V- —[u]) =0
e — V- (0V o [1])

which describes the dissipation of energy F in (Prob(X), W,). [Otto et al 90s-2000s,
Ambrosio 2005]

In a different flavor, we can write it just like ODE X = —Vf(x) (in the rate form; primal
vs. dual force-balance)

Ot = —Kowo(n) DF =V - (uVDF).



Example: WGF of (Boltzmann/KL /relative) Entropy

nonlinear (in measure) energy (e.g., in variational inference)

Fl) = D () = [ ToB(3 (<)o) e

OF 1] = 1ogp— 1|
5, 1] = logp —log,

density p := % The Fokker-Planck equation as the Wasserstein gradient flow [Otto
et al. 90s-2000s]
Otit

» If 7 is the Lebesgue measure, we obtain the heat equation 0;pp = Ap
» Note: The force field ‘g—z [1] and the “score” V‘;—Z [1] are not accessible if y is
atomic. = “score-matching". ..



Application: sampling and variational inference
Suppose 7 x e~ V() but with unknown normalizing constant, we want

inf D .
Mlgp ke (pll)

Using the WGF, we have the Fokker-Planck equation
e =V - (u(Vlog p(x) — VV(x)))

Suppose there is a single atom whose state is X; (R.V.), it is pushed towards the

velocity field
Vlog p(Xt) = VV(Xt)

We can construct gradient descent

Xt+]_ = Xt —+ 7 (V |Og p(Xt) - VV(Xt))

Langevin Monte-Carlo forward-Euler discretization

Xep1 = Xe — 7 VV(Xe) +V27Z,Z ~ N(0,1d)



Application: (distributionally) robust learning with Otto’s WGF

We can use our WGF theory (invented 20yr ago; nothing new) to solve Wasserstein
DRO for robust learning (also adversarial robustness in [Sinha et al. 2017])

mgin supE, 1(6,x) — v - Wi (i, fin)
I
The inner measure-update step is gradient ascent
Xt+1 = Xt + TV/(Qt, Xt)

where 7 = %.Then the whole Wasserstein robust learning is simply gradient
descent-ascent (GDA).



Energy dissipation balance of WGF
Recall the ODE case
d I TR )
() = — G + S IVF)IP)
n (Prob(X), F, W5), Fenchel(-Young) yields the Energy dissipation balance
(equality) [Ambrosio et al. 2007]

R () = 1w (0 ~ 31 Flu (6))

Fu(t) = Fu) = = | Wl + 9 Flus () e
» metric speed with velocity ve o 1w (t) =/ [ | ve]? du
» metric slope: [V~ Flu,(u \/f \V‘SF [1] (x)|? dp

The velocity field can be identified as v; = —V‘SF [1]. EDB can then be used as the
definition of gradient flows (curves of maximal sIopes) even without GFE.

For (Boltzmann) entropy F(u) = plog p, EDB gives %F(u(t)) = — [|Vlogp|?p dx



Evolutionary variational inequality (EVI),: Wasserstein GF

Under a few technical assumptions and the so-called A-geodesic-convexity of the energy
F, if along a geodesic curve 7,

F(7(s)) < (1 = s)F(7(0)) + sF(v(1)) - %S(l — )W (7(0).7(1)), Vs € [0,1].

Then, there exists unique gradient flow solution satisfies (EVI),, for .
1 o
e MWE (u(s), v) + Ma(t — s)(F(v) — F(u(t))),
Vv € dom(F), My\(7) = / e M7=9) (s,
0

Set v € arginf,, F(1), we have exponential convergence in-time and uniqueness of
gradient flow.



Thank you!

There are many other active research topics in GF for ML

» Gradient flow structure with kernel geometry [also some of my past / current works]
» Unbalanced transport and its gradient flow
» Applications: causal inference, mean-field NN, Nash equilibrium, offline RL, policy

optimization. ..
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