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Distributional shift in data-driven control

 For example, consider the Monte Carlo estimate for

probability of constraint satisfaction:
N

1
P(c(x) < 0) ~ Zﬁl{c(xi) <0l =1
i=1
* |f I have never seen a black swan, they must not exist...
e Stochastic and robust control with uncertainty-aware models

robustifies against known uncertainty
* but not the (inevitable) data distribution shift.
 \Watch out for the black swan!

Image credit: Arjovsky’17

* |Implication: sim2real failure, off-policy in RL



Mathematical problem of moments

Empirical risk: [E R l (5 ) ‘ [E l Generalized Moment Problem
[Stieltjes, Hausdorff, Hamburger
é:NP — N Sup P (5) 100+ yrs]
Empirical data dist. P = Z Néé
=1
Robust risk Sup l(f) a

P Find the worst-case distribution
5 E c%. D Uncertainty set \

(adversary)!

« The worst case risk in a set of probability measures & (ambiguity set), e.g., 5:3' .
 Modern approaches to the problem of moments use, e.g., . . .
- moment ambiguity set, e.g.,. & = {P: Epl = 1,Epé = pu, EpEEl = 8§}, *« :
This is a hyperplane in <. AN .
e A can be a metric- centered at }A’ e.g., Wasserstein metric , ¢ . . r .
-divergence. o .
 This paper proposes a generalized approach using a functional perspective - ; )

rooted in the theory of RKHS.

 QOur approach can be viewed as generalizations of the above ambiguity sets.



Elements of learning with kernels

* A kernel is a symmetric function
k: T XX — R, e.qg., Gaussian kernel

k(x,x) = exp (—Hx — x’H% / 202).

gb(x) = k(x, - ) is called the feature
' -

Hean

A positive semi-definite k defines a Hilbert

space # , which satisfies the
reproducing property

f) =/, dX)) o,V E X , X E XL .

duality
= [qb dP is the kernel mean embedding of P in 7 .

[ can be viewed as a generalized moment vector
e.g., let d(x) = [x, x*]"

lllustration design inspired by Gretton, Sutherland, Jitkrittum NeurlPS 2019 tutorial



Problem of moments with kernel mean embedding

N
ma)](DlIgllze / l(z) dP(x) maximize Zail(zi)
) (87 i1
subject to — £ < € 1 1
J H'u HPpIH = subject to aTKza — Z—QTszl | lTle < €2
M M?
¢(x) dP(z) = p N
Y ai=1,0;>0,i=1...N.
PeP,uecH, i=1
o where ¢(x) := k(x, - ) is the RKHS feature. We prove the solution convergence guarantee

* |If we choose the kernel to be the p-th order N ) N e )
polynomial kernel (non-characteristic), we recover Zaz’l(z’i) ’ / l(z) dP ().
the moment problem with p-th order moment 1=1
bound in the literature.

Note: We do not assume the loss to be quadratic or have

* This can be generalized to the class of integral . . .
a known Lipschitz constant as in many approaches.

probability metric, which includes the Wasserstein
metrics.



Uncertainty quantification in stochastic MPC

» Constrained stochastic control system
i L1 | _ L2
dt| o | | —0.1 (1 — x%) To — X1 + U

« We solve the stochastic OCP with scenario
SMPC. All simulated trajectories satisfy
constraints.

» Assuming an ambiguity set

lup — pplls < €, we solve the kernel g ©
moment problem to quantify the worst-case : 0.05 7 A/L
S

constraint violation probability in SMPC.



Conclusions

This paper introduced the kernel mean embedding
framework as a tool for solving generalized moment
problems to quantify the worst-case risk.

We propose a practical solution method and proved
the consistency of the solution.

Our theory unifies the existing ambiguity description
such as the Wasserstein distance, through IPM, and
moment ambiguity sets.

Subsequent works:

* Solve DRO with a generalized duality results with
RKHS functions (Kernel DRO).

* Principled constraint tightening for
distributionally robust MPC with Kernel DRO.

* MMD has attractive convergence rates for
control applications in terms of dimensionality.
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