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Distributional shift in data-driven control

• For example, consider the Monte Carlo estimate for  
probability of constraint satisfaction: 




• If I have never seen a black swan, they must not exist… 

• Stochastic and robust control with uncertainty-aware models 

robustifies against known uncertainty 
• but not the (inevitable) data distribution shift.

• Watch out for the black swan!


• Implication: sim2real failure, off-policy in RL 

ℙ(c(x) ≤ 0) ≈
N

∑
i=1

1
N

1{c(xi) ≤ 0} = 1
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Abstract— In order to anticipate rare and impactful events,

we propose to quantify the worst-case risk under distributional

ambiguity using a recent development in kernel methods —

the kernel mean embedding. Specifically, we formulate the

generalized moment problem whose ambiguity set (i.e., the

moment constraint) is described by constraints in the associated

reproducing kernel Hilbert space in a nonparametric manner.

We then present the tractable optimization formulation and its

theoretical justification. As a concrete application, we numeri-

cally test the proposed method in characterizing the worst-case

constraint violation probability in the context of a constrained

stochastic control system.

I. INTRODUCTION

We begin our discussion with the black swan metaphor,
which was visited in a recent popular book [1]. It is argued
that extremely rare events, like a black swan, may potentially
have a huge impact on the underlying system. However,
given limited historical data, statistical inference is prone
to failures in predicting black swans. This issue is also
relevant to optimization and control. Consider the illustrative
Fig. 1 of a stochastic control system. All the sampled state
trajectories (denoted by xt, in blue) satisfy some underlying
state constraint, which is staying below the curve (denoted
by c(xt)  0, in red). If we are interested in estimating the
constraint violation probability at a certain time from this
empirical dataset, a naive Monte Carlo estimate yields

P (c(Xt) > 0) ⇡
NX

i=1

1

N
1{c(x(i)

t ) > 0} = 0,

i.e., zero violation probability. This is sometimes referred to
as the zero-count problem, also known as the silent evidence
or inductivist turkey. However, just like the black swan
metaphor, the constraint violation event may be rare but
potentially impactful to the system.

The key here is to capture the concept of distributional
ambiguity, i.e., we are uncertain about our knowledge of
the probability measure itself. For example, the classical
Cantelli’s inequality for a zero mean unit variance random
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Fig. 1: Rare constraint violation event as the black swan

variable X ⇠ P states P (X > c) 
1

1+c2 , regardless of
what distribution P is. It is commonly argued in the literature
of optimization and control, e.g., [2], [3], that such bounds
are pessimistic. However, if P is subject to perturbations,
then the statistics such as mean and variance may become
uncertain. We refer to such uncertainty in distributions as
ambiguity. For example, in machine learning applications
such as [4], individual data samples themselves may be
perturbed by an adversarial or nature. Consequently, the
original already-conservative bound may fail to hold. From
this point of view, we must ask, “how can nature perturb the
empirical data distribution to hurt us the most?”

Generalized moment problem: In the mathematics lit-
erature, this is the study of the moment problem such
as the classical moment problems of Stieltjes, Hausdorff,
and Hamburger a century ago. In a nutshell, a generalized
moment problem can be abstractly written as

maximize
P2C

EP l(x), (1)

where C is a set of probability measures. In this paper, we
refer to C as the ambiguity set. For example, C = {P |R
�i(x) dP (x) = mi, i = 1 . . . p} where �i’s are some given

moment functions and mi’s are moments. This optimization
problem searches for the worst-case risk — expected value
of l(x) under the worst-case distribution.

The literature related to the moment problem is vast
spanning over decades. We now discuss a thread of mod-
ern computational approaches to deriving a bound (e.g.,
right-hand-side of Cantelli’s inequality). The early work of
[5] contains the duality approach to the moment problem.
Subsequently, [6] proved strong duality using conic linear
programming and the finite dimension reduction results from
[7]. Modern computational approaches such as [8], [9], [10]
proposed SDP formulations for the moment problem under
the assumption that the moment functions are polynomial-
representable. Subsequently and built on that work, [2] used
Choquet theory to study a few classes of non-degenerative
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Figure3:Trainingcurvesandsamplesatdi↵erentstagesoftraining.Wecanseeaclear

correlationbetweenlowererrorandbettersamplequality.Upperleft:thegeneratorisan

MLPwith4hiddenlayersand512unitsateachlayer.Thelossdecreasesconstistentlyas

trainingprogressesandsamplequalityincreases.Upperright:thegeneratorisastandard

DCGAN.Thelossdecreasesquicklyandsamplequalityincreasesaswell.Inbothupper

plotsthecriticisaDCGANwithoutthesigmoidsolossescanbesubjectedtocomparison.

Lowerhalf:boththegeneratorandthediscriminatorareMLPswithsubstantiallyhigh

learningrates(sotrainingfailed).Lossisconstantandsamplesareconstantaswell.The

trainingcurveswerepassedthroughamedianfilterforvisualizationpurposes.

4.2Meaningfullossmetric

BecausetheWGANalgorithmattemptstotrainthecriticf(lines2–8inAlgo-
rithm1)relativelywellbeforeeachgeneratorupdate(line10inAlgorithm1),the
lossfunctionatthispointisanestimateoftheEMdistance,uptoconstantfactors
relatedtothewayweconstraintheLipschitzconstantoff.

Ourfirstexperimentillustrateshowthisestimatecorrelateswellwiththequality
ofthegeneratedsamples.BesidestheconvolutionalDCGANarchitecture,wealso
ranexperimentswherewereplacethegeneratororboththegeneratorandthecritic
by4-layerReLU-MLPwith512hiddenunits.

Figure3plotstheevolutionoftheWGANestimate(3)oftheEMdistance
duringWGANtrainingforallthreearchitectures.Theplotsclearlyshowthat
thesecurvescorrelatewellwiththevisualqualityofthegeneratedsamples.

Toourknowledge,thisisthefirsttimeinGANliteraturethatsuchapropertyis
shown,wherethelossoftheGANshowspropertiesofconvergence.Thispropertyis
extremelyusefulwhendoingresearchinadversarialnetworksasonedoesnotneed
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Mathematical problem of moments

• The worst case risk in a set of probability measures  (ambiguity set), e.g., 

• Modern approaches to the problem of moments use, e.g., 


• moment ambiguity set, e.g., . 
This is a hyperplane in . 


•  can be a metric-ball centered at , e.g., Wasserstein metric , 
-divergence.


• This paper proposes a generalized approach using a functional perspective 
rooted in the theory of RKHS. 


• Our approach can be viewed as generalizations of the above ambiguity sets.

𝒦

𝒦 := {P : 𝔼P1 = 1,𝔼Pξ = μ, 𝔼PξξT = S}
𝒫

𝒦 ̂P ϕ

sup
ξ∈𝒳

l(ξ)

𝔼
ξ∼ ̂P

l(ξ) Generalized Moment Problem 
[Stieltjes, Hausdorff, Hamburger 
100+ yrs] 
Find the worst-case distribution 
(adversary)!

δξi

̂P

Empirical data dist. ̂P =
N

∑
i=1

1
N

δξi

Uncertainty set

sup
P∈𝒦

𝔼Pl(ξ)
Robust risk

Empirical risk:



Elements of learning with kernels
• A kernel is a symmetric function 

, e.g., Gaussian kernel 
.


•  is called the feature 

.


• A positive semi-definite  defines a Hilbert 
space , which satisfies the 
reproducing property 

k : 𝒳 × 𝒳 → ℝ
k(x, x′ ) = exp (−∥x − x′ ∥2

2 / 2σ2)
ϕ(x) := k(x, ⋅ )

k
ℋ

f(x) = ⟨ f, ϕ(x)⟩ℋ, ∀f ∈ ℋ, x ∈ 𝒳 .

ℋ

 is the kernel mean embedding of  in .


 can be viewed as a generalized moment vector 
e.g., let 

μ := ∫ ϕ dP P ℋ

μ
ϕ(x) = [x, x2]⊤

μP := ∫ ϕ dP

Illustration design inspired by Gretton, Sutherland, Jitkrittum NeurIPS 2019 tutorial

duality

𝒫



Problem of moments with kernel mean embedding

• where  is the RKHS feature.

• If we choose the kernel to be the p-th order 

polynomial kernel (non-characteristic), we recover 
the moment problem with p-th order moment 
bound in the literature. 


• This can be generalized to the class of integral 
probability metric, which includes the Wasserstein 
metrics.

ϕ(x) := k(x, ⋅ ) We prove the solution convergence guarantee 



Note: We do not assume the loss to be quadratic or have 
a known Lipschitz constant as in many approaches.



Uncertainty quantification in stochastic MPC

Fig. 4: This figure is best viewed in color. In this simulation,
the ambiguity level is set to ✏ = 0.01. (top) State trajectory
(blue) of the solution to the stochastic OCP. The constraint
is to stay below the (red dashed) line. The (pink) shaded
area denotes violation mass is transported to this location.
The higher the mass, the darker the shade. (bottom) is the
plot of the worst-case violation probability supP P (x > 1.5)
under ambiguity by solving the optimization problem (5).
The horizontal axis is time. See Appendix VII-B for more
details.

for the optimal control input. The state trajectory associated
with the OCP solution is plotted in Fig. 4 (top).

Furthermore, we assume there is ambiguity in the state
distribution Pxt . Given the empirical data distribution P̂xt =
1
N

P
�xti

at time t, we are interested in quantifying the
worst-case violation probability

sup
P

P (Xt > 1.5) subject to kµP � µP̂xt
kH  ✏.

The recent work of [30] has advocated using embedding for
representing and propagating uncertainty. We now demon-
strate our framework can use this representation to stress
test the control design. To this end, we solve (5) and plot the
worst-case violation probability at each time-step in Fig. 4
(bottom). There is no violation in the beginning as the initial
states are far from the constraint boundary. However, as
the system is steered closer to the boundary, the worst-case
violation probability rises.

Similar to the previous example, we visualize the geomet-
ric interpretation in Fig. 4 (top), illustrated as the shaded
area (pink). The darkness of the shade is proportional to the
amount of the violation probability mass. We may interpret
our method as transporting mass to the locations of violation
states to create a worst-case distribution. Unlike previous
approaches such as [12], our method does not require the
constraint region to be polyhedral. We now test the case

Fig. 5: This figure is best viewed in color. The dynamics
is the same as that in Fig. 4 except for we try to quantify
the worst-case violation probability for the non-polyhedral
constraint regions, supP P{

p
(x2

1 + x2
2) > 1.5} under ambi-

guity. (top) is the phase plot of the system. (arrow) indicates
the direction of the state trajectory over time. The (red)
boundary is a circle. The (black) arrow indicates the direction
of the state over time. The worst-case violation is shaded in
(pink) color. (bottom) plots the violation probability in time.

where the event has a simple non-nonlinear multivariate
constraint {

p
(x2

1 + x2
2)  1.5}. (In fact, it does not need

to be quadratic either.) Fig. 5 illustrates the resulting phase
plot of the system and the worst-case violation probability.
The interpretation is similar to Fig. 4.

The implication of this experiment is interesting from the
perspective of optimal control design. Traditional stochastic
control aims to bound most of the probability mass of
the uncertainty to stay within bound — such as constraint
tightening in stochastic MPC (cf. [3], [31]). We aim to reason
beyond this; Although all the stochastic control trajectories
in our experiment satisfy the constraints, we were able
to quantify non-zero worst-case violation probability. To
robustify against the worst-case risk under the distributional
ambiguity quantified by this paper, the control design must
be distributionally robust.

V. PROOFS OF THEORETICAL RESULTS

A. Proof of Lemma 1
Proof. Consider a convex combination of N Dirac measures
P =

PN
i=1 ↵i�zi . Its embedding is µP =

PN
i=1 ↵i�(xzi).

Obviously, P is a probability measure if and only ifPN
i=1 ↵i = 1,↵i � 0. The conclusion follows.

B. Proof of Lemma 2
Proof. Since {xi}

M
i=1 ✓ {zi}Ni=1 , we can trivially choosePN

i=1 ↵i�(zi) =
PM

i=1
1
M �(xi) which is strictly feasible.

• Constrained stochastic control system 



• We solve the stochastic OCP with scenario 

SMPC. All simulated trajectories satisfy 
constraints.


• Assuming an ambiguity set 
, we solve the kernel 

moment problem to quantify the worst-case 
constraint violation probability in SMPC.

Fig. 2: (blue line) This figure depicts the value of worst-case
violation probability (y-axis), i.e., supP P (x > c) changes
with respect to the various allowed ambiguity level ✏ (x-axis)
in the worst-case risk quantification problem. As we increase
the ambiguity level ✏, the worst-case violation probability
exceeds both Chernoff’s (gray dashed) and Cantelli’s (red
dashed) bound. See Appendix VII-A for more details.

to estimate the worst-case value as the ambiguity level ✏
increases. See the figure caption for more details.

Let us first recall classical Cantelli’s inequality mentioned
in the introduction. It bounds the tail probability of any
distribution sharing the first two moments. In our dataset,
Cantelli’s inequality yields a tail bound P (x � 2.5) 

1
1+2.52 ⇡ 0.138, which is of course not sharp. For example, a
sharper bound in this case is given by the Chernoff’s bound.
P (x � 2.5)  exp(�2.52/2) ⇡ 0.044. Even pessimistic
bounds are subject to violation under distributional ambi-
guity. As we can observe in Fig. 2, with a large enough
ambiguity level ✏, the worst-case risk exceeds that of the
bounds given by the Chernoff’s and Cantelli’s inequality.
This implies the importance of anticipating distributional
ambiguity that may defeat even conservative safety bounds.

We now analyze the behavior of our approach more
carefully. As we have discussed in Sec. III, we may interpret
the coefficient ↵i of the embedding

PN
i=1 ↵i�(zi) as the

mass of this discrete distribution at location xi. For simplicity
of viewing, we first sample a small set of M = 10 points
{xi}

M
i=1 to be our empirical data samples. In this case, all

sampled points are on the left side of c = 2.5. The naive
Monte Carlo estimate of the violation probability yields
P (X > c) ⇡

PN
i=1

1
N 1{xi > c} = 0. Recall this is the

phenomenon of silent evidence discussed in the introduction.
We now demonstrate that, by applying the proposed method,
we are able to anticipate the potential violation with limited
data.

We then solve the optimization problem (5) and plot the
expansion weights {↵i}

N
i=1 in Fig. 3 for various ambiguity

levels ✏. Similar to our geometric interpretation of (5), the
mass is “transported” from left-hand-side of c (constraint
satisfaction), to the right-hand-side (constraint violation).
This is reminiscent of the worst-case risk characterized by
optimal transport metric, e.g., in [15].

Fig. 3: Examining the worst-case constraint violation behav-
ior under different ambiguity level. The (blue) vertical bars
indicate the mass (height) allocated at a certain location x
(horizontal axis). The (red) bar indicates the constraint level
c = 2.5. (top) ✏ = 0, no distributional ambiguity is allowed.
All the mass stayed within the constraint. (middle) ✏ = 0.01,
a small amount of mass is shifted to the right side. The
violation probability is 0.7%. (bottom) ✏ = 0.1, violation
probability 7.1%. More mass is allowed to be moved to the
violation side due to a larger tolerance of ambiguity. See
Appendix VII-A for more details.

B. Worst-case constraint violation in stochastic control
In this experiment, we are interested in the constrained

stochastic optimal control problem (OCP). We consider the
system model of the Van der Pol oscillator

d

dt


x1

x2

�
=


x2

�0.1
�
1� x2

1

�
x2 � x1 + u

�
.

This example was adapted from [28]. The goal of the control
design is to steer the system state x1 as high as possible
while staying below the bound (for simplicity, we use the
constraint x1  1.5). This is formulated as the following
uncertain OCP.

minimize
x(·),u(·)

R T
0 kx1(t)� 3.0k22 dt

subject to ẋ(t) = f(x(t), u(t)), 8t 2 [0, T ]
�40  u(t)  40, 8t 2 [0, T ]
�0.25  x1(t)  1.5, 8t 2 [0, T ]
x(0) = s,

(7)

where the initial state s is uncertain. To work with the
nonlinear dynamics, we adopt the scenario MPC [29] to solve

∥μP − μ ̂P∥ℋ ≤ ϵ



Conclusions
• This paper introduced the kernel mean embedding 

framework as a tool for solving generalized moment 
problems to quantify the worst-case risk.


• We propose a practical solution method and proved 
the consistency of the solution.


• Our theory unifies the existing ambiguity description 
such as the Wasserstein distance, through IPM, and 
moment ambiguity sets.


• Subsequent works: 


• Solve DRO with a generalized duality results with 
RKHS functions (Kernel DRO).


• Principled constraint tightening for 
distributionally robust MPC with Kernel DRO. 

• MMD has attractive convergence rates for 
control applications in terms of dimensionality.

Thank you! This talk is based on

• Z, Jitkrittum, Diehl, Schölkopf, 2020. Worst-Case Risk 

Quantification under Distributional Ambiguity using 
Kernel Mean Embedding in Moment Problem. CDC.


• Z, Jitkrittum, Diehl, Schölkopf, 2020. Kernel 
Distributionally Robust Optimization. Preprint.


• Nemmour, Schölkopf, Z. 2020. Constraint Tightening 
Techniques for Distributionally Robust Model Predictive 
Control: A Functional Approach. Preprint.
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