From Distributional Ambiguity to Gradient Flows

Wasserstein, Fisher-Rao, and Kernel Approximation

Jia-Jie Zhu

Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany

Weierstraß-Institut für Angewandte Analysis und Stochastik

November 28th, 2024 CDM Seminar. École Polytechnique Fédérale de Lausanne, Switzerland

Motivation

Robust learning under distribution shifts [Z. et al. AISTATS 2021, AISTATS 2023, ...]

Empirical risk minimization min
$$\frac{1}{N} \sum_{i=1}^{N} \ell(\theta, [x_i, y_i])$$

 $x_i, y_i \sim P_0$: data sample. θ : learning parameter e.g. DNN weights.

$$\begin{split} \mathcal{A} &= \left\{ \mu \in \mathcal{P} \big| \ \mathrm{D}(\mu | \hat{P}_N) \leq \epsilon \right\} \\ \hat{P}_N &= \frac{1}{N} \sum_{i=1}^N \delta_{x_i}: \text{ empirical dist.} \\ \mathrm{D: \ divergence \ between \ measures} \end{split}$$

Wasserstein DRO [Esfahani & Kuhn 2018; Sinha et al. 2017] loss *l*: (p/w) quadratic, logistic, etc. Kernel DRO [Z. et al. AISTATS 2021, 22...] for general nonlinear loss in ML

Kernel distributionally robust optimization (DRO)

$$\min_{\theta} \sup_{\mathsf{MMD}(\mu,\hat{P}) \leq \epsilon} \mathbb{E}_{\mu} \ell(\theta, [X, Y])$$

Theorem [Z et al., 2021] DRO problem is equivalent to the dual kernel learning problem

$$\begin{split} \min_{\boldsymbol{\theta}, \boldsymbol{f} \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{f}(\xi_i) + \epsilon \|\boldsymbol{f}\|_{\mathcal{H}} \\ \text{s.t. } \ell(\boldsymbol{\theta}, \cdot) \leq \boldsymbol{f}, \forall \; \boldsymbol{x}, \boldsymbol{y} \text{ a.e.} \end{split}$$

Geometric intuition: dual f as robust surrogate; flatten the curve

Stochastic control Nemmour et al **Z**. IEEE CDC'22

Adversarial robustness **Z** et al. AISTATS'22

Q: is $\mathbb{E}_{\mu}\ell(\theta, [X, Y])$ linear? Convex? Along the geodesics? We need math foundation.

Causal inference as measure optimization [Kremer, Z. et al. ICML 2022, ICML 2023]

Conditional moment restriction (CMR)

find
$$\theta$$
 s.t. $\mathbb{E}[Y - g_{\theta}(X)|Z = z] = 0$ for z a.e.

Empirical Likelihood / Kernel Method of Moment [Kremer & Z et al., 2022, Kremer et al. & Z, 2023]; cf. [Owen, 1988; Qin and Lawless, 1994; Bierens, 1982]

$$\inf_{\boldsymbol{\theta},\boldsymbol{Q}\in\mathcal{P}} \alpha \operatorname{MMD}^{2}(\boldsymbol{Q},\hat{\boldsymbol{P}}) + \beta D_{\varphi}(\boldsymbol{Q}|\omega)$$

s.t. $\mathbb{E}_{\boldsymbol{Q}}\left[(\boldsymbol{Y} - g_{\theta}(\boldsymbol{X}))^{T} h(\boldsymbol{Z}) \right] = 0,$
 $\forall h \in \mathcal{H}$

Nonlinear/deep instrumental variable (IV) regression

Topic of DFG project SPP 2298 "Theory Foundation of Deep Learning"

Gradient Flows of Probability Measures

Deep generative models

New view of DGM (dynamic) Simulate an S/O/PDE [Chen et al. 2018, Song et al. 2021]

 $\dot{X}_t = abla \xi_t(X_t)$, for some learned $abla \xi_t$, e.g. NN

Perspective: flow and evolution of prob. measures

Wasserstein distance and optimal transport

"Euclidean distance" between probability measures

p-th order Kantorovich-Wasserstein distance be-

tween measures μ_0, μ_1 on $X \subset \mathbb{R}^d$ with p finite moments is defined through the Monge problem

$$W^p_p(\mu_0,\mu_1) := \min\left\{ \int |x-T(x)|^p \, \mathrm{d}\mu_0(x) \Big| \ T_{\#}\mu_0 = \mu_1 \right\}^{\bullet}$$

the Kantorovich problem

$$W_{p}^{p}(\mu_{0},\mu_{1}) := \min \left\{ \int |x_{0} - x_{1}|^{p} \, \mathrm{d}\Pi \right|$$
$$\pi_{\#}^{(1)}\Pi = \mu_{0}, \pi_{\#}^{(2)}\Pi = \mu_{1} \right\}$$

[[]Peyré and Cuturi, 2019]

From gradient descent to gradient flow

Optimization problem in
$$\mathbb{R}^{d}$$
: $\min_{x \in \mathbb{R}^{d}} F(x)$
Gradient descent $x_{k+1} = x_{k} - \tau \cdot \nabla F(x_{k})^{\top}$
Prox. step (implicit)/ JKO $x_{k+1} \in \underset{x}{\operatorname{argmin}} \left(F(x) + \frac{1}{2\tau} ||x - x_{k}||^{2} \right)$

16

au
ightarrow 0 continuous time: ODE $\dot{x}(t) = -
abla F(x(t))^{ op}$

is the gradient-flow equation of the energy F(x) in the space \mathbb{R}^d with the Eulidean geometry described by $||x||^2$.

From Euclidean gradient descent to Wasserstein gradient flow

Generalizing the Euclidean geometry $(\mathbb{R}^d, \|\cdot\|)$ to (\mathcal{P}, W_2) JKO: Wasserstein gradient flow [Otto, 1996, 2001]

$$\mu^{k+1} \in \operatorname*{argmin}_{\mu \in \mathcal{P}} F(\mu) + rac{1}{2 au} W_2^{-2}(\mu, \mu^k)$$

Continuous-time (au
ightarrow 0) gradient flow equation

PDE has

$$\partial_{t}\mu = -\text{div}\left(\mu\nabla\frac{\delta F}{\delta\mu}\left[\mu\right]\right)$$
a gradient structure:
$$\begin{cases} \text{Measure Space}: & \mathcal{P} \text{ or } \mathcal{M}^{+} \\ \text{Energy functional}: & F \text{ (e.g. KL)} \\ \text{Dissipation Geometry}: & W_{2} \text{ or He} \end{cases}$$

The merit of the right gradient flow formulation of a dissipative evolution equation is that it **separates energetics and kinetics**: The energetics endow the state space with a functional, the kinetics endow the **state space** with a (Riemannian) geometry via the metric tensor. [Otto 2001]

Inference via interacting particle systems: Langevin MC

Goal: to sample from
$$\pi(x) = \frac{1}{\int e^{-V(x)} dx} e^{-V(x)}$$

Langevin SDE Fokker-Planck PDE

$$\mathrm{d}X_t = -\nabla V(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}W_t$$

$$\partial_t \mu = \Delta \mu + \operatorname{div} (\mu \nabla V)$$

In a series of papers jointly with A. Mielke, we provide rigorous analysis of various gradient flows beyond the W_2 setting of [Bakry and Émery, 1985] e.g. log-Sobolev.

Information divergence and Hellinger (Fisher-Rao) distance

$$arphi$$
-divergence energy [Csiszár, 1967] $\mathrm{D}_{arphi}(\mu|
u) := \int arphi\left(rac{\mathrm{d}\mu}{\mathrm{d}
u}(x)
ight) \ \mathrm{d}
u$

$$\begin{split} \varphi_{p}(s) &:= \frac{1}{p(p-1)} \left(s^{p} - p(s-1) - 1 \right) \\ p &= 2 : \chi^{2}, \quad p = \frac{1}{2} : \text{Hellinger} \\ p &\to 1 : \text{KL}, \ \varphi_{1}(s) := \varphi_{\text{KL}} = s \log s - s + 1 \\ p &\to 0 : \text{rev. KL}, \ \varphi_{0}(s) := s - 1 - \log s \end{split}$$

Hellinger distance over \mathcal{M}^+

$$\mathsf{He}^2(\mu_0,\mu_1)=4\cdot\int \left(\sqrt{\mu_0}-\sqrt{\mu_1}
ight)^2$$

See [Gallouët and Monsaingeon, 2017, Laschos and Mielke, 2019, Z and Mielke, 2024] for other formulations.

Gradient flows over \mathcal{M}^+ : Hellinger / Fisher-Rao

Wasserstein/diffusion: mass-preserving Birth-death process $2H_2O \rightleftharpoons 2H_2 + 1O_2$ Hellinger gradient flows (\mathcal{M}^+, F, He)

$$\begin{split} \min_{\mu \in \mathcal{M}^+} F(\mu) + \frac{1}{2\tau} \mathsf{He}^2(\mu, \mu^k) \\ \text{continuous-time } \tau \to \mathsf{0} : \dot{\mu} = -\mu \cdot \frac{\delta F}{\delta \mu} \left[\mu \right] \end{split}$$

Example

• [Z and Mielke, 2024] Convergence analysis of KL-inference

 $\min_{\mu \in \mathcal{M}^+} \mathrm{D}_{\mathrm{KL}}(\mu | \pi)$ in $(\mathcal{P}, \mathsf{He})$

- variational inference via natural gradient: (spherical) Hellinger metric tensor gives the Fisher information matrix [Amari, 1998, Khan and Nielsen, 2018]
- entropic mirror descent in optimization [Nemirovskij and Yudin, 1983, Beck and Teboulle, 2003]

Kernel Approximation

Kernel methods and MMD

 ${\cal H}$ is the reproducing kernel Hilbert space (RKHS), which satisfies

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}, \forall f \in \mathcal{H}, x \in \mathcal{X}$$

Integral operator $\mathcal{K}_{\rho}: L^2(\rho) \to L^2(\rho)$:

$$\mathcal{K}_{\rho}g(x) := \int k(x, x') g(x') d\rho(x')$$

Maximum-mean discrepancy (MMD) [Gretton et al., 2012]

$$MMD(\mu_{0}, \mu_{1}) := \left\| \int k(x, \cdot) d\mu_{0} - \int k(x, \cdot) d\mu_{1} \right\|_{\mathcal{H}}$$
$$= \sqrt{\int \int k(x, x') \, d(\mu_{0} - \mu_{1})(x) \, d(\mu_{0} - \mu_{1})(x')}$$
$$= \sup_{\|f\|_{\mathcal{H}} \le 1} \int f \, d(\mu_{0} - \mu_{1})$$

MMD as dekernelized Hellinger distance

The "MMD paper" [Gretton et al., 2012] has now > 5k citations. Dyanmic formulation of MMD: "straight line" geodesics

$$\mathsf{MMD}^{2}(\mu,\nu) = \min\left\{\int_{0}^{1} \|\xi_{t}\|_{\mathcal{H}}^{2} \, \mathrm{d}t \ \middle| \ \dot{u} = -\mathcal{K}^{-1}\xi_{t}, u(0) = \mu, u(1) = \nu\right\}.$$

The integral operator $\mathcal{K}_{\rho} := g(x) := \int k(x, x') g(x') d\rho(x'), \quad g \in L^{2}_{\rho}, L^{2}(\rho) \rightarrow L^{2}(\rho)$ is compact, positive, self-adjoint, and nuclear.

Theorem (MMD = de-kernelized Hellinger)

The dynamic formulation of the kernelized squared MMD coincides with that of the squared Hellinger distance

The Riemannian metric tensors are related by $\mathbb{G}_{MMD} = \mathcal{K}_{\mu} \circ \mathbb{G}_{He}(\mu)$.

Gradient flow geometries obtained by kernelization

Theorem [Z and Mielke, 2024] The Riemannian metric tensors of Hellinger satisfy $\mathbb{G}_{MMD} = \mathcal{K}_{\mu} \circ \mathbb{G}_{He}(\mu)$, i.e.,

MMD=(de-)kernelized Hellinger

Statistical Inference via Gradient Flows

Bayesian inference and probabilistic ML

Infer posterior distribution π of the model parameters θ given data,

In practice, the exact π is intractable: **approximate inference** [Jordan et al., 1999, Wainwright and Jordan, 2008]

$$\min_{\mu \in \mathcal{A} \subset \mathcal{P}} \mathrm{D}_{\mathrm{KL}}(\mu | \pi(\theta | \mathrm{Data})).$$

Gaussian variational inference: $\mu \in \mathcal{N}^d$; also Laplace approx.

Sampling / MCMC: generate samples $\theta^i \sim \pi$, $\frac{1}{N} \sum_{i=1}^N \delta_{\theta^i} \to \pi$

Inference with forward and reverse KL

$$\begin{array}{ll} \min_{\mu \in \mathcal{N}^d \subset \mathcal{P}} \mathrm{D}_{\mathrm{KL}}(\pi | \mu) & \mathrm{vs.} \\ \\ \text{forward } / \text{ inclusive} \\ \\ \text{mode-covering} \end{array}$$

$$\begin{split} \min_{\boldsymbol{\mu} \in \mathcal{N}^{d} \subset \mathcal{P}} \mathrm{D}_{\mathrm{KL}}(\boldsymbol{\mu} | \boldsymbol{\pi}) \\ \text{reverse / exclusive} \\ \text{mode-seeking} \end{split}$$

[Bishop 2006]

Forward (incl.) KL inference as kernelized Wasserstein flows

 $\min_{\mu \in \mathcal{A} \subset \mathcal{P}} \mathcal{D}_{\mathrm{KL}}(\pi | \mu).$

Preferable to $D_{KL}(\mu|\pi)$.Existing algorithms are based on heuristics [Minka 2013; Naesseth et al. 2020; Jerfel et al. 2021; McNamara et al. 2024; Zhang et al. 2022; ...]

Wasserstein gradient flow [Z. 2024]: $\dot{\mu} = \operatorname{div}\left(\mu \nabla \left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\mu}\right)\right)$

Not implementable due to $\nabla(1 - d\pi/d\mu)$.

Kernel approx. [Z. 2024; Gladin et al. & Z. NeurIPS 2024]:

$$\dot{\mu} = \operatorname{div}\left(\mu \nabla \int k(z, \cdot) \left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\mu}(z)\right) \, \mathrm{d}\mu(z)\right)$$

Theorem. The PDE has gradient structure: $\begin{cases}
\text{Energy functional}: \quad \frac{1}{2} \text{ MMD}^2(\cdot, \pi) \\
\text{Geometry}: \qquad \text{Wasserstein} \\
\text{MMD}^2(\mu, \pi) = \mathbb{E}_{x, y \sim \mu} k(x, y) + \mathbb{E}_{x, y \sim \pi} k(x, y) - 2\mathbb{E}_{x \sim \mu, y \sim \pi} k(x, y)
\end{cases}$

Unbalanced transport gradient flows of forward (incl.) KL inference [Gladin et al. & Z. NeurIPS 2024; Z. 2024]

[Z. 2024] precise connection between the gradient flows of:

$$\min_{\mu \in \mathcal{A} \subset \mathcal{P}} \mathrm{D}_{\mathrm{KL}}(\pi | \mu)$$
 and $\min_{\mu \in \mathcal{A} \subset \mathcal{P}} \mathsf{MMD}^2(\mu, \pi)$

[Arbel et al. 2019] studied the latter without guarantee of convergence; [Chizat, 2022, Hagemann et al., 2023, Neumayer et al., 2024, Chen et al., 2024]

[Z. 2024] Wasserstein-Fisher-Rao flow: reaction-diffusion eq:

$$\dot{\mu} = \underbrace{\alpha \cdot \operatorname{div} \left(\mu \nabla \left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\mu}\right)\right)}_{\text{Wasserstein: transport}} - \underbrace{\beta \cdot \mu \cdot \left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\mu}\right)}_{\text{Fisher-Rac: birth-death}}$$

Interaction-force transport [Z. 2024, Gladin et al. & Z. NeurIPS 2024] with global convergence guarantee

$$\dot{\mu} = \alpha \cdot \operatorname{div}\left(\mu \nabla \int k(x, \cdot) \, \mathrm{d}(\mu - \pi)(x)\right) - \beta \cdot (\mu - \pi)$$

JKO splitting scheme

The PDE

$$\dot{\mu} = \alpha \cdot \operatorname{div}\left(\mu \nabla \int k(x, \cdot) \, \mathrm{d}\left(\mu - \pi\right)(x)\right) - \beta \cdot (\mu - \pi)$$

can be simulated using the JKO scheme

$$\mu^{\ell+\frac{1}{2}} \leftarrow \underset{\mu \in \mathcal{P}}{\operatorname{argmin}} F(\mu) + \frac{1}{2\tau} W_2^2(\mu, \mu^{\ell}), \qquad (\text{Wasserstein step})$$
$$\mu^{\ell+1} \leftarrow \underset{\mu \in \mathcal{P}}{\operatorname{argmin}} F(\mu) + \frac{1}{2\eta} \mathsf{MMD}^2(\mu, \mu^{\ell+\frac{1}{2}}), \quad (\text{MMD step})$$

for $F(\mu) = \frac{1}{2} MMD^{2}(\mu, \pi)$.

Insight on the variational principle: kernel methods vs information geometry

Theorem [Z, 2024] Suppose the kernel k is bounded and integrally strictly positive definite. Then, the solutions of the following variational problems coincide:

$$\min_{\mu\in\mathcal{P}}rac{1}{2}\,\mathsf{MMD}^2(\mu,\pi)+rac{1}{2\eta}\,\mathsf{MMD}^2(\mu,\mu').$$

$$\operatorname*{argmin}_{\mu\in\mathcal{P}} \mathrm{D}_{\mathrm{KL}}(\pi|\mu) + \frac{1}{\eta} \mathrm{D}_{\mathrm{KL}}(\mu'|\mu).$$

Thank you!

This talk is based on the following papers

- · Z. Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective. arXiv preprint
- · Gladin-Dvurechensky-Mielke-Z. Interaction-Force Transport Gradient Flows. NeurIPS 2024
- Z-Mielke. Kernel Approximation of Fisher-Rao Gradient Flows. arXiv preprint Kremer-Nemmour-Schölkopf-Z. Estimation Beyond Data Reweighting: Kernel Method of Moments. *ICML 2023.*
- · Z-Jitkrittum-Diehl-Schölkopf. Kernel Distributionally Robust Optimization. AISTATS 2021.

For more information, see my website: https://jj-zhu.github.io/ ; PhD position (Berlin) available