MAX PLANCK INSTITUTE

FOR INTELLIGENT SYSTEMS

Heiner Kremer! Jia-Jie Zhu?, Krikamol Muandet!, Bernhard
Scholkopf’

"Max Planck Institute for Intelligent Systems, Tubingen, Germany;
’Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany;

Motivation

Conditional moment restrictions (CMR) identify a parameter 6, via:
Elp(X;00)| 2] =0 Pgas., (1)
with ¢ : X x © — R" being an integrable function.

Examples:

" Instrumental variable regression [1]
= Off-policy evaluation in RL [2]

" Double/Debiased ML [4]

Equivalent unconditional moment restrictions:
E[W(X:0)"h(Z)] =0 VYheH (2)

= Requires methods which can handle continua of moment restrictions

Method of Moments

Moment restrictions identify a parameter 8, € © uniquely via:

where ¢ : X x © — R™.

Empirical counterpart:
Ep[(X;0)]=0, 6€0CR, (3)
where P, = 3" | 14, is the empirical distribution.

In the over-identified case (m > p) it is generally impossible to fulfill all moment
restrictions exactly — Constraints (3) need to be relaxed

Generalized Method of Moments (GMM)

The GMM relaxes the constraint (3) into a minimization of a quadratic form,

POVEMM — aromin E, (X 0)" (Qg)_lEan(X;@)]- (4)
4SS)

= 2-step procedure:
1. Compute initial parameter estimate 6 to compute Q; =

2. Optimize (4) using Q;
" Multiple generalizations to continuum moment restrictions / CMR [1, 3, 6]

~ ~

Ep [0(X;0)0(X;0)"]

Generalized Empirical Likelihood (GEL)

The GEL relaxes the restrictions (3) by requiring Ep[y(X;6)] = 0 to be fu filled exactly
but allowing the distribution P to deviate from the empirical distribution B,.

The GEL estimator for 8 minimizes the profile divergence,

R(@):Prgg Df(P||P,) st. Ep[(X:0)]=0, Ep[l]=1.

AL — argmin R(6)

0cO
where Dy(P||Q) = [ f(%5 )dQ is the f-divergence between distributions P and Q.

= Asymptotically equivalent to GMM (contains GMM as special case)
" Improved small sample properties especially in the case m > p [7]

Functional Generalized Empirical
Likelihood Estimation for Conditional

Moment Restrictions
Functional GEL

For a CMR of the form (1), a profile divergence can be defined as

R(0) —1;11% Dy(P||P,) st. Ep[(X;0)|Z]=0, Pgas.,

with P .= {P < P, : Ep[l] = 1}.
Let H be a sufficiently large Hilbert space of functions such that
E[(X:00)| 2] =0 Pgras. <= E[(X:;0) h(Z)]=0 VYheH. (5)

Define the moment functional, a statistical functional H(X, Z;60) € H*, as
H(X,Z:0): H— R
hi— H(X,Z:0)(h) =¢(X;0) h2).
Then, the computation of the profile likelihood can be written as a functionally con-
strained optimization problem

R(0) :}1)1’612 Dy(P||P,) st. ||Ep[H(X,Z;60)]|2 = 0.

Relax the problem to restore strong duality:

RA(8) = inf Dy(PIIP,) sit. [|BR[H(X, Z;0)lle <

Motivate FGEL estimator from the exact dual formulation:

1ER 1=1

where f*(v) = sup,cga(v,p) — f(p).

FGEL estimation

Let V' C R be an open interval containing zero and ¢ : V. — R be a twice differen-
tiable concave function with first and second derivatives ¢1(0) # 0 and ¢2(0) < 0
Then we define the empirical FGEL objective G : © x Hy — R as

An
G, (0, 1) qu (21, 20)(R) — ZFIIRl3

where H(CEZ,ZZ,(9)<h) = ?,b(QZZ,@)Th(ZZ) Eind HQ = {h e H : @b(ﬁb’z,@)Th(ZZ) c
dom(¢), 1 <i <n}. The FGEL estimate 0 of 6, Is then given by

0 = argmin sup Gy (6, h).

" Allows leveraging arbitrary ML models as instrument functions A
= Divergence functions beyond the Cressie-Reed family, in particular # x? (£ GMM)
= Can benefit from recent progress in saddle point optimization (e.g. [5])

Asymptotic properties

Let \, = Op(n—f), then under several technical assumptions we have as n — oo:

= Consistency:
6560, and ||E[H(X, Z;0)]|lx = Op(n~ /")

" Asymptotic normality:
V= 6) 5 N(0,S), o= ((VeH"Q (V1 H))™!
where Qy, := Ep, [H(X, Z,00)H(X, Z,00)"] + Ml ® T 5 Q

Choice of Divergence and Instrument Function

Choice of Divergence

f(p) ¢(v) dom(¢)
X* 5l =17 —5(L+v)’ R
Burg| —log(p) | —log(l —v) | (—o00,1— 1]
KL | plog(p) —e’ R

= Contains continuous updating version of VMM [1] as special case (f = x?)

= Continuum generalizations of the original EL (Burg) and exponential tilting
estimators (KL)

Choice of Instrument Function Class

* Kernel-FGEL: Gy, (0,0) = 1577 1 ¢ (300 (o) K)oy (24, 0)) — 223" o Ko,
= |nner optimization over o convex — Solve with e.g. 2-layer LBFGS

= Provably fulfills equivalence relation (5)

" Neural-FGEL: G\, (0,w) = 1 31, & (¥ (2:0) Thulz:)) — 52 200 1P (20) [
= Non-convex saddle point problem — Solve with optimistic Adam

= Strong empirical performance and superior scaling due to mini-batch training

Experiments

Regression under heteroskedastic noise:
y=1x'0+¢e, =z~ Uniform([—1.5,1.5)), elz ~N(0,0 = 52?)
Conditional moment restriction: E[Y — X '0|X] =0 Px-as.

Kernel-FGEL
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Discussion

" Many problems in ML can naturally be expressed as risk minimizations

= (Conditional) moment restrictions appear in emerging areas such as causal
Inference and robust ML and require dedicated solution methods

" We extended the powerful GEL framework to CMR and proved its asymptotics
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