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Motivation

Conditional moment restrictions (CMR) identify a parameter θ0 via:

E[ψ(X ; θ0) |Z] = 0 PZ-a.s., (1)
with ψ : X × Θ → Rn being an integrable function.

Examples:
Instrumental variable regression [1]
Off-policy evaluation in RL [2]
Double/Debiased ML [4] Z X Y
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Equivalent unconditional moment restrictions:

E[ψ(X ; θ0)>h(Z)] = 0 ∀h ∈ H (2)
⇒ Requires methods which can handle continua of moment restrictions

Method of Moments

Moment restrictions identify a parameter θ0 ∈ Θ uniquely via:
E[ψ(X ; θ0)] = 0,

where ψ : X × Θ → Rm.

Empirical counterpart:

EP̂n
[ψ(X ; θ)] = 0, θ ∈ Θ ⊆ Rp, (3)

where P̂n =
∑n

i=1
1
nδxi is the empirical distribution.

In the over-identified case (m � p) it is generally impossible to fulfill all moment
restrictions exactly → Constraints (3) need to be relaxed

Generalized Method of Moments (GMM)
The GMM relaxes the constraint (3) into a minimization of a quadratic form,

θOWGMM = argmin
θ∈Θ

EP̂n
[ψ(X ; θ)]>

(
Ω̂θ̃

)−1
EP̂n

[ψ(X ; θ)]. (4)

2-step procedure:
1. Compute initial parameter estimate θ̃ to compute Ω̂θ̃ = EP̂n

[ψ(X ; θ̃)ψ(X ; θ̃)>]
2. Optimize (4) using Ω̂θ̃

Multiple generalizations to continuum moment restrictions / CMR [1, 3, 6]

Generalized Empirical Likelihood (GEL)
The GEL relaxes the restrictions (3) by requiring EP [ψ(X ; θ)] = 0 to be fulfilled exactly
but allowing the distribution P to deviate from the empirical distribution P̂n.

The GEL estimator for θ minimizes the profile divergence,
R(θ) = min

P�P̂n

Df(P ||P̂n) s.t. EP [ψ(X ; θ)] = 0, EP [1] = 1.

θGEL = argmin
θ∈Θ

R(θ)

where Df(P ||Q) =
∫
f
(
dP
dQ

)
dQ is the f-divergence between distributions P and Q.

Asymptotically equivalent to GMM (contains GMM as special case)
Improved small sample properties especially in the case m � p [7]

Functional GEL

For a CMR of the form (1), a profile divergence can be defined as
R(θ) := min

P∈P
Df(P ‖ P̂n) s.t. EP [ψ(X ; θ) |Z] = 0, PZ-a.s.,

with P := {P � P̂n : EP [1] = 1}.
Let H be a sufficiently large Hilbert space of functions such that

E[ψ(X ; θ0) |Z] = 0 PZ-a.s. ⇐⇒ E[ψ(X ; θ0)>h(Z)] = 0 ∀h ∈ H. (5)

Define the moment functional, a statistical functional H(X,Z; θ) ∈ H∗, as
H(X,Z; θ) : H → R

h 7→ H(X,Z; θ)(h) = ψ(X ; θ)>h(Z).

Then, the computation of the profile likelihood can be written as a functionally con-
strained optimization problem

R(θ) = inf
P∈P

Df(P ||P̂n) s.t. ‖EP [H(X,Z; θ0)]‖H∗ = 0.

Relax the problem to restore strong duality:
Rλ(θ) := inf

P∈P
Df(P ||P̂n) s.t. ‖EP [H(X,Z; θ)]‖H∗ ≤ λ.

Motivate FGEL estimator from the exact dual formulation:

Rλ(θ) = sup
h∈H
µ∈R

µ− 1
n

n∑
i=1

f ∗(µ +H(xi, zi; θ)(h)) − λ‖h‖H,

where f ∗(v) = supp∈Rn〈v, p〉 − f (p).

FGEL estimation
Let V ⊆ R be an open interval containing zero and ϕ : V → R be a twice differen-
tiable concave function with first and second derivatives ϕ1(0) 6= 0 and ϕ2(0) < 0.
Then we define the empirical FGEL objective G : Θ × Ĥθ → R as

Gλn(θ, h) := 1
n

n∑
i=1

ϕ (H(xi, zi; θ)(h)) − λn
2

‖h‖2
H,

where H(xi, zi; θ)(h) = ψ(xi; θ)>h(zi) and Ĥθ := {h ∈ H : ψ(xi; θ)>h(zi) ∈
dom(ϕ), 1 ≤ i ≤ n}. The FGEL estimate θ̂ of θ0 is then given by

θ̂ = argmin
θ∈Θ

sup
h∈Ĥθ

Gλn(θ, h).

Allows leveraging arbitrary ML models as instrument functions h
Divergence functions beyond the Cressie-Reed family, in particular 6= χ2 (=̂ GMM)
Can benefit from recent progress in saddle point optimization (e.g. [5])

Asymptotic properties

Let λn = Op(n−ξ), then under several technical assumptions we have as n → ∞:

Consistency:
θ̂

p→ θ0 and ‖E[H(X,Z; θ̂)]‖H∗ = Op(n−1/2+ξ)

Asymptotic normality:
√
n(θ̂ − θ0)

d→ N(0,Σθ), Σθ = ((∇θH
∗)Ω−1(∇θ>H))−1,

where Ω̂λn := EP̂n
[H(X,Z, θ0)H(X,Z, θ0)∗] + λnI ⊗ I

p→ Ω

Choice of Divergence and Instrument Function

Choice of Divergence

f (p) ϕ(v) dom(ϕ)
χ2 1

2(p− 1)2 −1
2(1 + v)2 R

Burg − log(p) − log(1 − v)
(

− ∞, 1 − 1
n

]
KL p log(p) −ev R

Contains continuous updating version of VMM [1] as special case (f = χ2)
Continuum generalizations of the original EL (Burg) and exponential tilting
estimators (KL)

Choice of Instrument Function Class

Kernel-FGEL: Gλn(θ, α) = 1
n

∑n
i=1 ϕ

(∑m
r=1(α>

r Kr)iψr(xi; θ)
)

− λn
2
∑m

r=1 α
>
r Krαr

Inner optimization over α convex → Solve with e.g. 2-layer LBFGS
Provably fulfills equivalence relation (5)

Neural-FGEL: Gλn(θ, ω) := 1
n

∑n
i=1 ϕ

(
ψ(xi; θ)>hω(zi)

)
− λn

2n
∑n

i=1 ‖hω(zi)‖2
Rm

Non-convex saddle point problem → Solve with optimistic Adam
Strong empirical performance and superior scaling due to mini-batch training

Experiments

Regression under heteroskedastic noise:
y = x>θ + ε, x ∼ Uniform([−1.5, 1.5]), ε|x ∼ N (0, σ = 5x2)

Conditional moment restriction: E[Y −X>θ|X ] = 0 PX-a.s.
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Discussion

Many problems in ML can naturally be expressed as risk minimizations
(Conditional) moment restrictions appear in emerging areas such as causal
inference and robust ML and require dedicated solution methods
We extended the powerful GEL framework to CMR and proved its asymptotics
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