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Piecewise affine formulation (PWA) of
Hybrid system
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Exact solution of mixed-integer program

“Big-M” formulation of MIP

1. Get state estimation z,, .
N-1 2: Solve MIQP.
minimize Z r, Qs +u Ru; + x5 Pxy 3: Apply the first control solution uj.
t=1

subject to |z p1 — Alwy — Blug| < (1 — )M

Wy, ug) < (1= pg)M
d pwi=1, uj €{0,1}, Vit

To = Tp. i

But...

@ Solving MIP online is (often) out of the question



Offline Explicit HMPC

Offline
5
uw*(z) = Fla + G, z € Ry, Online
where R; is a critical region
But...

@

1: Enumerate possible mode sequences.
. For each mode sequence, solve multi-

parametric program to characterize critical re-
gions R;.

. For each region, store the PWA control law

u*(z,) = F'x, + G* and the corresponding
region.

1: Get state estimation z,
: Locate the region R; that contains z, € R;
3: Apply PWA control u*(x,) = F'z, + G*

.5 The number of critical regions can be huge

@ For a given x, finding the critical region R; can be slow
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Use Voronoi tessellation induced by the nearest neighbor classifier to approxi-
mate feasible regions for hybrid MPC.

The NN classifier is trained using supervised learning to classify the mode se-
quence switching mode sequences based on the sampled states.

As we have more and more samples,
the region approximates feasible regions for mode sequences



Computation reduction

N-1
minimize Z z; Qi +u] Ruy + x5 Py
’U,t,,Ll,t,t:O,...,N—]. i—1
subject to i1 — Az — Bluy| < (1 — p)M

(e, ur) < (10— p)M
» ui=1, py€{0,1}, Vit

o = Tp-

If we fix the mode sequences, the computational
cost is drastically reduced.

LNMS

: Get state estimation x), .
: Query the nearest neighbor classifier (with

dataset D) for the mode sequence M =

{mi zNzl

: Solve hybrid MPC with integer variables

{m;}¥, as warm-start solution. Terminate
when computational budget reached.

: Add the (z,, M™)-pair to the dataset D, where

M* is the integer solution obtained last step.

: Apply the first control solution .
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Computation reduction
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Running example: cart and wall

4l —— Exact hybrid MPC
= Ours
( i O Initial positions
xii_ — xl + 'CEQ At g (o] EquiIibr:'ium point
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(a) 15 samples (2 region) (b) 100 samples (3 regions) (c) 1000 smpls (3 reg.)
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Control-constrained, high initial velocity
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Improving by warm starting MIP

minimize
’U,t,/J,t,t:O,...,N—l

subject to

01 02 03 04

N-1
T T T

p T Qe+ uy Ruy +wyPry Improve on the resulting controller by “relabeling” the stored

per — Ay — Biug| < (1— pi)M samples D = {x;, M;} via warm-starting techniques of MIP.

(g, up) < (1—pg)M

d pui=1, pi€{0,1}, Vit
7

To = Tp- (b) zoomed center of (a) (c) improved version of (b)
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Appliction: used as oracles for Imitation learning

Use the proposed method to gather dataset D = {xz;, u;}i=1.2,. ..,
learn a policy directly
U:x—u rﬁ H

by, e.g., (parametric) regression

—— Exact hybrid MPC
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Summary

* The problem: Solving hybrid MPC under the ol
piecewise-affine model involves computationally 100] | A hybrid system
heavy mixed-integer quadratic programming @ : with jumps
(MIQP) —so{

* Main idea: A simple non-parametric classifier “100]

learns predict the switching mode sequences
based on sampled states.

* Insight: The Voronoi tessellation induced by the
nearest neighbor classifier approximates the MIQP
control law in hybrid MPC.

Proposed learning-
control law
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Another talk at IFAC 20: Z et al., Kernel Probabilistic Programming for Dynamical Systems



