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Exact solution of mixed-integer program

But…

• Solving MIP online is (often) out of the question
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“Big-M” formulation of MIP
1: Get state estimation xp .
2: Solve MIQP.
3: Apply the first control solution u⇤

0.
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Offline Explicit HMPC

• The number of critical regions can be huge

• For a given x, finding the critical region Ri can be slow
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☹

☹

But…

u⇤(x) = F ix+Gi, x 2 Ri,

where Ri is a critical region
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1: Get state estimation xp

2: Locate the region Ri that contains xp 2 Ri

3: Apply PWA control u⇤(xp) = F ixp +Gi

<latexit sha1_base64="SFKPPriKGSVBrC91lYUEgW8N1mo="></latexit>

Online

Offline

1: Enumerate possible mode sequences.
2: For each mode sequence, solve multi-

parametric program to characterize critical re-
gions Ri.

3: For each region, store the PWA control law
u⇤(xp) = F ixp + Gi and the corresponding
region.
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Main idea

Use Voronoi tessellation induced by the nearest neighbor classifier to approxi-
mate feasible regions for hybrid MPC.
The NN classifier is trained using supervised learning to classify the mode se-
quence switching mode sequences based on the sampled states.

<latexit sha1_base64="h9DZhDNI75X1kaCiJuN3f/gic+g="></latexit>

As we have more and more samples,

the region approximates feasible regions for mode sequences 



Computation reduction
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Figure 5: Online method with samples from trajectories to-
gether with resulting feasible region partition. Left: 1 tra-
jectory (25 points); right: 8 trajectories with initial states
within (0.735, 0.75)⇥ (0, 10).

Figure 6: Percentage of MIP runs
during execution of LNMS for
environment with 1 wall and 2
walls, respectively. This empiri-
cally validates Proposition.1

(a) environment (b) partition (1000 samples) (c) sample trajectory

Figure 7: Pendulum with elastic wall. (a) illustration of the environment. (b) partitioning from
Algo. 1 resulting in 18 regions, (c) an example trajectory with MPC open-loop plans.

exact MIP scheme MPC trajectories, as shown in Fig. 1(b,c) for the two wall case. In the one wall249

case, for the 10 trajectories shown in 9 our trajectories are identical to the exact hybrid MPC without250

the need for a single mixed integer search.251

We show the closed-loop trajectory of MPC using LNMS in Alg. 1.252

Figure 8: Environment 1 trajectory.
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1: Get state estimation xp .
2: Query the nearest neighbor classifier (with

dataset D) for the mode sequence M =
{mi}Ni=1

3: Solve hybrid MPC with integer variables
{mi}Ni=1 as warm-start solution. Terminate
when computational budget reached.

4: Add the (xp,M⇤)-pair to the datasetD, where
M⇤ is the integer solution obtained last step.

5: Apply the first control solution u⇤
0.

<latexit sha1_base64="KEzSkHr6zRV/BeIr9R1CGqUV6m8="></latexit>

LNMS

If we fix the mode sequences, the computational 
cost is drastically reduced.
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Running example: cart and wallAlgorithm 3 LNMS: Solution optimality improvement
1: loop
2: Pick a state-label (x0,M)-pair from dataset D
3: Solve OCP (1) with integer variables M = {mi}Ni=1 as warm-start incumbent solution. Op-

tionally, early terminate after computational budget reached.
4: Relabel this sample and add the new (x0,M⇤)-pair to D, where M⇤ is the integer solution

from the last step
5: end loop

(a) 15 samples (2 region) (b) 100 samples (3 regions) (c) 1000 smpls (3 reg.) (d) improved (4 regions)

Figure 3: (a-c) Evolution of the approximate feasible regions using LNMS-offline with increasing
number of static samples and (d) after applying the improvement scheme in Sec. 3.3.

Algorithm 1 predicts an infeasible mode sequence (classification error). Use the NN-convergence183

bound P
⇤  limn!1 Pn(error)  P

⇤(2 � c
c�1P

⇤), where c is the number of classes (c.f. [20]),184

and P
MIP
n = Pn(error), the conclusion follows. ⇤185

The implication of this proposition is that, with increasing amount of samples, we get a faster and186

faster controller by the online learning scheme. This is empirically validated in the experiment187

section.188

3.3 Improving optimality of sampled mode sequences by warm-starting MIP189

As an approximate MPC algorithm, LNMS only aims to produce feasible instead of optimal mode190

sequence prediction. In practice, one may also choose to early terminate the MIP at a feasible191

solution due to the fact that most costly computation is to produce a tight dual bound to certify192

optimality — a good solution may be available much sooner (cf. [8]). Both those two sources193

contribute to suboptimal mode sequences for sampled points.194

However, using the instance-based nature of the NN classifier, we can improve on the resulting195

controller by simply “relabeling” the stored samples via warm-starting techniques of MIP.196

Intuitively, this process (as in Algorithm 3) picks a point from the stored samples and feed its mode197

sequence as warm-start to the MIP solver. As it is already feasible, the solver will always return a198

mode sequence that is more optimal for this sample. Hence we have the intuitive results in Propo-199

sition 3.2 (omitting the straightforward proof). We provide examples of this process in Section 4200

(Fig. 3, Fig. 4).201

Proposition 3.2 If the re-labeling using Algorithm 3 is done to full MIP optimality for all stored202

data points, Algorithm 1 with dataset D recovers the exact optimal solution of online hybrid MPC203

as number of samples |D| ! 1.204

4 Numerical Experiments205

In our experiments, we implemented our MPC controller using Gurobi as the optimization solver206

(both MIP and QP). We have attached the pseudo-code with the submission. The code repository207

will be made publically available.208

We consider the first two examples: a cart with one and two walls, see Fig. 1 (a). The cart with one209

wall (like Fig. 1(a) without the left wall). The dynamics equations are described by the following210
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Control-constrained, high initial velocity
(a) (b) (c)

Figure 1: Cart with two walls. (a) environment sketch, (b) cart starts at high velocity and bounces
(discrete timesteps), note the vertical time axis. (c) same as in (b) but in state space (x1:postion and
x2: velocity). The gray lines with arrow denote jumps across switching modes.

During continuous dynamics periods (e.g. when the cart moves along its path without contact), tools42

from continuous optimization such as sensitivity analysis, that give rise to efficient online methods43

[6] or sequential quadratic programming (SQP)-based methods [7], can be used to control the system44

in a receding horizon fashion. However, when contact with the wall happens (discrete event), the45

structured solution of the sensitivity analysis is not valid anymore–as there are no control guarantees46

when the problem parameters leave the boundaries of the region of validity of the control law. In47

such cases, online hybrid MPC using mixed-integer programming (MIP) can be an effective way of48

taking optimal discrete decisions (e.g. whether or not to willingly impact the wall). However, solving49

MIP online involves computationally heavy processes such as Branch-and-Bound with exponential50

time-complexity. Despite the speed-up on the order of billion time over the previous years [8],51

solving MIP for online control is still impractical.52

Explicit MPC [9, 10, 11] seeks to offload online computation to offline. Its insight is that 1) the53

optimal control law of an OCP with quadratic objective linear constraints is piecewise affine state-54

feedback, i.e. u(x) = F
i
x + G

i
, x 2 Ri, where Ri are convex polyhedra (refered to as critical55

regions) and 2) there may be exponentially many such regions need to be computed and stored.56

In the context of hybrid systems, e.g. robot motion with contact dynamics, different regions cor-57

respond to different (switching) mode sequences (e.g., in or not in contact can be encoded as two58

different modes). It is possible to carry out the mode sequence enumeration offline and store the59

state-feedback-affine policy. Despite its elegant theory, we have yet to witness the wide application60

of explicit MPC in robotics possibly due to formidable complexity in 1) both online look-up and61

offline computation and 2) storage of the partitions.62

Closely related to this work, the authors of [12] use insights from MPC stability proof to simplify63

explicit MPC from critical regions to inner approximations of feasible regions, resulting significant64

computational saving. Our approach further simplifies the region computation and storage by the65

non-parametric learning algorithm, sidestepping polyhedron operations completely.66

Very recently, a few works show promises in applying machine learning to hybrid control. [13]67

experimented with value function and policy learning in hybrid systems. In this work, we show our68

method can in fact serve as an efficient oracle for policy training. This work shares similar features69

with [14] in reducing computational cost by learning mode sequences. However, we exploit the non-70

forgetting property of non-parametric methods to perform online learning, as well as the geometric71

structure of hybrid MPC solutions to avoid exhaustive offline MIP runs.72

We hope to contribute to the robotics community in the following aspects:73

• We propose a simple-yet-effective fast learning algorithm to warm-start mixed-integer pro-74

grams — the computationally heavy part of online hybrid MPC. As learning progresses75

(online), it greatly reduces computational cost.76

• The properties of the proposed algorithm are exploited to allow i) post-processing of solu-77

tions improving towards optimality and early-termination of MIP (Sec. 3.3); ii) capability78

of serving as efficient oracle for training hybrid control policy (end of Sec. 4); iii) straight-79

forward implementation for robotics practitioners.80

Notation In this paper, x 2 R
d often denotes a column vector of dimension d and x

> its transpose.81

N often denotes the horizon of OCP and n the number of samples of the learning algorithm. xp82
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(a) offline, 5000 samples (b) zoomed center of (a) (c) improved version of (b)
493 regions 153 regions 33 regions

Figure 4: Feasible regions of the cart with two walls. (a) partition of the resulting regions from
Algo. 1 with early termination of 5.0s. (b) zoomed view on the center area of (a). (c) after applying
the warm-start relabeling method using 5s improvement proposed in Sec. 3.3.
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where m is the cart mass (1.0) and ✏ is the coefficient of restitution (we set to 0.9). It could be thought212

of an actuated version of a bouncing ball—a classical hybrid system. C1 = {x1 + x2 �t < xwall}213

denotes the state space where the dynamics is the double integrator and C2 = {x1 + x2 �t � xwall}214

denotes the state space where the contact with the wall happens. xwall = 0.75. The discretization215

coefficient is set to �t = 0.01 for all our experiments. The PWA for cart with two walls is a216

straightforward extension. The second example is a pendulum with an elastic wall, see Fig. 7(a)217

below. The cart-wall system makes and breaks contact instantly while the second system allows218

variable contact duration, thus resulting different controller behaviors. The equations of the elastic219

pendulum are identical to the ones in [12], see also the appendix for details.220

Feasible region partitioning We first analyze the space partitioning of Algorithm. 2 in the offline221

sampling. For the first environment we synthesize MPC with horizon N = 10 (no early termination222

of the MIP), the cost weights in formulation (1) are Q = I2, R = 0.001. S = � ·K where K is the223

solution to the algebraic Riccati equation for the system in mode C1, we choose � = 1000 for faster224

convergence behavior to the attractor but this is not a crucial choice. In this we follow common225

practice in MPC and use soft cost instead of hard terminal constraint.226

Starting from an empty dataset D = ;, random initial conditions are drawn. For each initial point227

the OCP (1)-(3) is solved with a fixed mode-sequence of the nearest neighbor. If not feasible B&B is228

employed. Fig. 3 displays the evolution of the approximated regions as the controller gathers more229

samples. We then apply the improvement scheme proposed in Sec. 3.3 as shown in Fig. 3(d). We230

observe the regions are refined resulting in a finer parcelation. Note the difference between original231

feasible regions and (more optimal) improved regions.232

In the case with the two walls we test a setup with higher velocities and an MPC prediction horizon233

of N = 25. In this case the system contains a large amount of mode sequences and feasible regions.234

Furthermore, we constrain control |u|  10 to enable more regions.(as system will go through more235

modes if started with high velocity.) Therefore, early termination is necessary — we use a 5s time-236

threshold. In Fig. 4(a,b) the approximate feasible partitioning is presented together with its improved237

version in (c).238

Online vs static offline sampling and learning The online version of LNMS offers the possibility239

to use all points of a trajectory. In this way it only gathers necessary data around the trajectories it240

visited in the past experience. Fig. 5 shows the approximate regions obtained in an online fashion241

for the simple cart environment. Since not only the initial point is used (as in the offline variant)242

smaller number of trajectories are required for a good coverage of the state-space that is actually243

reached by the system. Here, the starting conditions are such that only two regions are visited.244

Comparison to full MIP245

In contract to running the full MIP our algorithm has great computational savings as show in Fig. 6246

for all experiments. Only a small fraction of mixed integer optimizations have to be performed247

approaching to zero as more data is collected. We also compare the approximated scheme with the248
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Improving by warm starting MIPAlgorithm 3 LNMS: Solution optimality improvement
1: loop
2: Pick a state-label (x0,M)-pair from dataset D
3: Solve OCP (1) with integer variables M = {mi}Ni=1 as warm-start incumbent solution. Op-

tionally, early terminate after computational budget reached.
4: Relabel this sample and add the new (x0,M⇤)-pair to D, where M⇤ is the integer solution

from the last step
5: end loop

(a) 15 samples (2 region) (b) 100 samples (3 regions) (c) 1000 smpls (3 reg.) (d) improved (4 regions)

Figure 3: (a-c) Evolution of the approximate feasible regions using LNMS-offline with increasing
number of static samples and (d) after applying the improvement scheme in Sec. 3.3.
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Improve on the resulting controller by “relabeling” the stored
samples D = {xi,Mi} via warm-starting techniques of MIP.
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Appliction: used as oracles for Imitation learning

Use the proposed method to gather dataset D = {xi, ui}i=1,2,...,
learn a policy directly

µ : x 7! u

by, e.g., (parametric) regression

min
✓

⌃ikµ✓(xi)� uik2.
<latexit sha1_base64="Ccjr2TN1q6afGIP1FDQ8vVg657k="></latexit>

Online policy evaluation is fast!



Summary
• The problem: Solving hybrid MPC under the 

piecewise-affine model involves computationally 
heavy mixed-integer quadratic programming 
(MIQP). 

• Main idea: A simple non-parametric classifier 
learns predict the switching mode sequences 
based on sampled states. 

• Insight: The Voronoi tessellation induced by the 
nearest neighbor classifier approximates the MIQP 
control law in hybrid MPC.

A hybrid system 
with jumps

Proposed learning-
control law

Another talk at IFAC 20: Z et al., Kernel Probabilistic Programming for Dynamical Systems


