
Kernel Mean Embedding
for Dynamical Systems

A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems

with Kernel Probabilistic Programming

Based on joint work with Krikamol Muandet, 
Moritz Diehl, and Bernhard Schölkopf

Jia-Jie Zhu
Max Planck Institute for Intelligent Systems

Tübingen, Germany

1 / 14



Learning with kernels
Consider the inner product in finite dimensions

This is a similarity measure.

How do we generalize this similarity measure to more use cases?

⟨x, x
′⟩
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Learning with kernels
To scale up the similarity measures, consider applying a transformation to
the space of interest

Evaluate the inner product in the mapped space,

We refer to  as a feature map and  as a kernel function.

x ↦ ϕ(x)

k(x, x′) := ⟨ϕ(x), ϕ(x′)⟩

ϕ k
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Kernel mean embedding
Recall a kernel is a symmetric, positive semi-definite bivariate function,

e.g., .

Kernel mean embedding (KME) maps probability distributions to
functions in a Hilbert space, called the reproducing kernel Hilbert space
(RKHS).

 can be thought of a generalized moment vector

k(x,x′) = exp(− ∥x − x′∥2
2)

1
2σ2

μ : P ↦ ∫ k(x, ⋅) dP(x), μ̂ : P ↦
N

∑
i=1

αik(xi, ⋅),  xi ∼ P

μ
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Example: Second-order polynomial kernel embedding
Polynomial kernel of order two 

The kernel mean embedding is given by

The embedding keeps track of the mean and variance of .

Universal kernel (e.g., Gaussian, . )

keeps track of infinite-order moments

k(x,x′) = (x⊤x′ + 1)2

μX = ∫ k(x, ⋅)dP(x) = ∫ (x⊤(⋅) + 1)
2
 dP(x)

= (⋅)⊤
Exx⊤(⋅) + 2Ex⊤(⋅) + 1

X

k(x,x′) = exp(− ∥x − x′∥2
2)

1
2σ2
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Embedding dynamical system
In a nutshell, we represent the distribution of , the state of the dynamical
systems (continuous or discrete time), by its KME.

for some weights .

(Statistical consistency). The embedding estimator  produced by a

one-step numerical integration rule with step size  is consistent, i.e.,

xt

μxt = ∫ k(xt, ⋅)dP(ξ), μ̂xt
=

N

∑
i=1

αik(x
(i)
t , ⋅)

αi

μ̂x̂(t,ξ)

h

μ̂x̂(t,ξ,h) → μx(t,ξ), ∀t,  as N → ∞,  h → 0
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The maximum mean discrepancy (MMD)
Given RKHS ,

 

H

MMD(H,P ,Q) := sup
f∈H

{∫ fdP − ∫ fdQ} = ∥μP − μQ∥H
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The maximum mean discrepancy (MMD)
Given two sets of samples  and  from simulations of two
dynamical systems, a sample-based estimator for  is given
by

In essense, MMD gives a new metric in the probability simplex. (other
metrics include the Wasserstein distance, -divergence.)

See Z et al., (Kernel DRO), for deeper mathematical connections between
MMD and robust optimization

{xi}
M
i=1 {yi}

N
i=1

∥μxt
− μyt

∥H

M

∑
i,j=1

k(xi, xj) −
M

∑
i=1

N

∑
j=1

k(xi, yj) +
N

∑
i,j=1

k(yi, yj)
1

M 2

2

MN

1

N 2

ϕ
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Example: comparing two dynamical system

ẋ(t) = ξ x, x(0) = x0

ξ ∼ GMM,  ξ′ ∼ N(m, σ)

Eξ = Eξ′,Eξ2 = Eξ′2.
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What if P is uncertain? We can solve
the kernel moment problem:

Application: estimating chance constraint violation
probability

   sup
P

P(c(x) > 0)

subject to ∥μP − μ
P̂
∥H ≤ ϵ
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Going deeper: distributionally robust optimization
with kernels?

Universal kernel (e.g., Gaussian, . )

keeps track of infinite-order moments.

Mathematically, the MMD associated with a universal kernel is a proper
metric in the probability simplex. Hence, one can perform DRO with it

This can be reformulated using conic duality as a tractable program. (Z. et
al. 2020, Kernel DRO).

k(x,x′) = exp(− ∥x − x′∥2
2)

1
2σ2

min
θ

sup
P

{∫ l(θ, ξ) dP(ξ): MMD(P , P̂ ) ≤ ϵ}
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Takeaway
This paper proposed to use kernel mean embedding as a tool for
dynamical systems.

RKHS inuduces a metric in probability measures, the MMD.

Possible applications:

System identification: MMD can be viewed as a test statistic

Kernel distributionally robust optimization: risk-averse optimization
under distributional ambiguity (K-DRO. See a subsequent work in Z et
al., 2020.)
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Thank you! This talk is based on
Z, Muandet, Diehl, Schölkopf, 2019. A New Distribution-Free Concept for
Representing, Comparing and Propagating Uncertainty in Dynamical Systems
with Kernel Probabilistic Programming. IFAC 2020
Z, Jitkrittum, Diehl, Schölkopf, 2020. Kernel Distributionally Robust
Optimization. Arxiv preprint
Z, Jitkrittum, Diehl, Schölkopf, 2020. Worst-Case Risk Quantification under
Distributional Ambiguity using Kernel Mean Embedding in Moment Problem.
Arxiv preprint
Z, Diehl, Schölkopf, 2020. A Kernel Mean Embedding Approach to Reducing
Conservativeness in Stochastic Programming and Control. L4DC 2020

For more information: contact me at jzhu@tuebingen.mpg.de
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