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Learning with Rernels

e Consider the inner product in finite dimensions
/
(z,2)
This is a similarity measure.

» How do we generalize this similarity measure to more use cases?
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Learning with Rernels

» To scale up the similarity measures, consider applying a transformation to
the space of interest

z — ¢(z)

« Evaluate the inner product in the mapped space,

k(z,a') == (¢(x), p(z'))

We refer to ¢ as a feature map and k as a kernel function.
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Kernel mean embedding
« Recall a kernel is a symmetric, positive semi-definite bivariate function,
e g, k(z,a') = exp(— Fr [z — 2'[3).

e Kernel mean embedding (KME) maps probability distributions to
functions in a Hilbert space, called the reproducing kernel Hilbert space
(RKHS).

N
p: Pi— /k(w, -)dP(x), f:Pw— Zaik(a:i, ), x; ~ P

1=1

RKHS »#

I'R-I

T @ue

» u can be thought of a generalized moment vector
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Example: Second-order polynomial Rernel embedding

Polynomial kernel of order two k(z,z') = (z 'z’ + 1)?

The kernel mean embedding is given by

px = /k(az, )dP(z) = /(CIZT() + 1)2 dP(x)
= () Ezz'(-) +2Ez' (-) + 1

The embedding keeps track of the mean and variance of X.

Universal kernel (e.g., Gaussian, k(z, z') = exp(— 2C1f2 |z — :I:’H§> )

keeps track of infinite-order moments

6/14



Embedding dynamical system

In a nutshell, we represent the distribution of x;, the state of the dynamical
systems (continuous or discrete time), by its KME.

N .
ey, = / Ko )dPE), i, =Y aik(z, )
=1

for some weights «;.

« (Statistical consistency). The embedding estimator ﬂi(t &) produced by a
one-step numerical integration rule with step size h is consistent, i.e.,

ﬂs&(t,{,h) — Hg(t,e)> Y, a8 N — 00, h — 0
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The maximum mean discrepancy (MMD)

Given RKHS H,

MMD(H,P,Q) :=sup{ [ fdP — /fdQ} = |lup — polln
feH

real data

{xi}

5X % synthetic data

X
X Ix X {Go(zi)}

1
~

MMD Test

"ﬂx = nﬁ'Ge(Z)"J? is zero?
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The maximum mean discrepancy (MMD)

« Given two sets of samples {z; }.7, and {y;}? , from simulations of two
dynamical systems, a sample-based estimator for ||z, — fy, ||% is given

by
i D2 ko) — o= Y Y k() + w5 D k(v )
i =1 i=1 j=1 i =1

e In essense, MMD gives a new metric in the probability simplex. (other
metrics include the Wasserstein distance, ¢-divergence.)

e See Z et al., (Kernel DRO), for deeper mathematical connections between
MMD and robust optimization
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Example: comparing two dynamical system

B(t) =€z, 2(0) = 2o N

¢~ GMM, ¢ ~ N(m, ) g oo \
2 04t
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Application: estimating chance constraint violation
probability

2.0 - What if P is uncertain? We can solve
the kernel moment problem:
1.5 7 sup P(c(z) > 0)
—
X P
1.0 ~ subject to ||up — :LL[EDHH <e€
0.5
I I I
0.0 0.5 1.0
time (s)
g5 0.10
o
2 0.05 +
(@]
> 0.00 T l
0.0 0.5 1.0
time (s)
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Going deeper: distributionally robust optimization
with Rernels?

e Universal kernel (e.g., Gaussian, k(z, z') = exp(—zfi2 |z — :c'H%) )

keeps track of infinite-order moments.

« Mathematically, the MMD associated with a universal kernel is a proper
metric in the probability simplex. Hence, one can perform DRO with it

min sup { / 1(0,£) dP(£): MMD(P, P) < e}

& p

e This can be reformulated using conic duality as a tractable program. (Z. et
al. 2020, Kernel DRO).
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Takeaway

« This paper proposed to use kernel mean embedding as a tool for
dynamical systems.

« RKHS inuduces a metric in probability measures, the MMD.
« Possible applications:
o System identification: MMD can be viewed as a test statistic

o Kernel distributionally robust optimization: risk-averse optimization
under distributional ambiguity (K-DRO. See a subsequent work in Z et
al., 2020.)
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Thank you! This talk is based on

e 7, Muandet, Diehl, Scholkopf, 2019. A New Distribution-Free Concept for
Representing, Comparing and Propagating Uncertainty in Dynamical Systems
with Kernel Probabilistic Programming. IFAC 2020

e Z,Jitkrittum, Diehl, Scholkopf, 2020. Kernel Distributionally Robust
Optimization. Arxiv preprint

e 7, ]Jitkrittum, Diehl, Scholkopf, 2020. Worst-Case Risk Quantification under
Distributional Ambiguity using Kernel Mean Embedding in Moment Problem.
Arxiv preprint

e 7, Diehl, Scholkopf, 2020. A Kernel Mean Embedding Approach to Reducing
Conservativeness in Stochastic Programming and Control. L4DC 2020

For more information: contact me at jzhu@tuebingen.mpg.de

14/14



