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Optimization under uncertainty

e Chance constraint [Charnes et al. 50s] (downside: intractable)

min [(z) subjectto PC(z,§) <0>1-o

e Robust optimization [Ben-Tal et al. 90s] (downside: conservative)

mljn [(x) subjectto f(z,£) <0,VEclU
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Scenario approach to chance constraint

min [(z), subjectto C(z,&) <O0fori=1,...,N.

« This is a convex approximation to the channce-constrained problem

min [(x), subjectto P(C(z,£) <0)>1-—a.

o If N — 00, chance constraint is satisfied at level almost = 1. i.e.
conservative

« If N is small, we may be too optimistic
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Reducing conservativeness

min [(z), subjectto C(z,&) <O0fori=1,...,N.

How about we pick a subset of scenarios {£;}7 | to discard?
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Kernel mean embedding

« Recall a kernel is a symmetric, positive semi-definite bivariate function,
n _ 1 1|2
e.g., k(z,z') = exp(—T‘sz —x H2)

e Kernel mean embedding (KME) maps probability distributions to
functions in a Hilbert space.

N
p:P— /k(w, -)dP(x), f:Pw— Zaik(azi, ), x; ~ P

1=1

« W can be thought of a generalized moment vector
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Why use kRernel mean embedding for optimization

It allows us to perform optimization problem in the space of probability
distribution.

min / ldP
P,u

subject to [ —pplln <e
[ ¢(@) aP() = .

e By virtue of the RKHS tools, optimization is often tractable.
It induces a metric on the space of distributions, which can be used for
distributionally robust optimization (DRO; cf. Z. 2020).
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llustration of our idea

Use L-1 penalty to discard scenarios while staying close to the original
distribution.

N
min |3 aid(€) — fielZ + Allw el
=1
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Scenario approach with discarding

o Discard the scenarios §; with the indexsetZ ={i |a; =0, =1,...,n}
by solving

N
min || Y uid(&) — full3, + Mw allr.
1=1

e Then, we re-solve the stochastic programming problem with the reduced-
set scenarios R := {1,...,n} \ Z.
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Stochastic control example
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Discard scenarios
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Discard more...
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Result: optimistic controller
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Result: reduced conservatism

violation
(]
|_I
(@]

P

cost

26.25 A

26.00 A

25.75 A

25.50 -

num. of removed constr.

0

50

13/15



Takeaway

e Kernel mean embedding in RKHS allows efficient optimization in
distribution space

mgn f(P) becomes nlltin f(P).

o It can be combined with other methods like DL, e.g., MMD-GAN,
adversarial training, blah blah blah.

« This paper focus on reducing conservativeness of the scenario approach
to stochastic programming and control. What if we wish to be more
robust?

o Kernel Distributionally Robust Optimizaiton (K-DRO. See the next
paper: Z et al., 20.)
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Thank you! This talk is based on

e Z,Diehl, Scholkopf, 2020. A Kernel Mean Embedding Approach to Reducing
Conservativeness in Stochastic Programming and Control. L4DC

e Z, Jitkrittum, Diehl, Scholkopf, 2020. Kernel Distributionally Robust
Optimization. Preprint

e 7, ]Jitkrittum, Diehl, Scholkopf, 2020. Worst-Case Risk Quantification under
Distributional Ambiguity using Kernel Mean Embedding in Moment Problem.
Preprint

e 7, Muandet, Diehl, Scholkopf, 2019. A New Distribution-Free Concept for
Representing, Comparing and Propagating Uncertainty in Dynamical Systems with
Kernel Probabilistic Programming. IFAC 2020
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