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Optimization under uncertainty

Chance constraint [Charnes et al. 50s] (downside: intractable)

Robust optimization [Ben-Tal et al. 90s] (downside: conservative)

min
x

 l(x) subject to   PC(x, ξ) ≤ 0 ≥ 1 − α

min
x

 l(x) subject to  f(x, ξ) ≤ 0,  ∀ξ ∈ U
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Scenario approach to chance constraint

This is a convex approximation to the channce-constrained problem

If , chance constraint is satisfied at level almost . i.e.
conservative

If  is small, we may be too optimistic

min
x

 l(x), subject to  C(x, ξi) ≤ 0 for i = 1, … ,N .

min
x

 l(x), subject to   P(C(x, ξ) ≤ 0) ≥ 1 − α.

N → ∞ = 1

N
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Reducing conservativeness

How about we pick a subset of scenarios  to discard?

min
x

 l(x), subject to  C(x, ξi) ≤ 0 for i = 1, … ,N .

{ξi}
N
i=1
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Kernel mean embedding
Recall a kernel is a symmetric, positive semi-definite bivariate function,

e.g., .

Kernel mean embedding (KME) maps probability distributions to
functions in a Hilbert space.

 can be thought of a generalized moment vector

k(x,x′) = exp(− ∥x − x′∥2
2)

1
2σ2

μ : P ↦ ∫ k(x, ⋅) dP(x), μ̂ : P ↦
N

∑
i=1

αik(xi, ⋅),  xi ∼ P

μ
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Why use kernel mean embedding for optimization
It allows us to perform optimization problem in the space of probability
distribution.

By virtue of the RKHS tools, optimization is often tractable.
It induces a metric on the space of distributions, which can be used for
distributionally robust optimization (DRO; cf. Z. 2020).

min
P ,μ

∫ l dP

subject to  ∥μ − μ
P̂

∥H ≤ ϵ.

∫ ϕ(x) dP(x) = μp.

6 / 15



Illustration of our idea
Use L-1 penalty to discard scenarios while staying close to the original
distribution.

min
α

 ∥
N

∑
i=1

αiϕ(ξi) − μ̂ξ∥
2
H

+ λ∥w⊤α∥1.
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Scenario approach with discarding
Discard the scenarios  with the index set 
by solving

Then, we re-solve the stochastic programming problem with the reduced-
set scenarios .

ξi I = {i | αi = 0, i = 1, … ,n}

min
α

 ∥
N

∑
i=1

αiϕ(ξi) − μ̂ξ∥
2
H

+ λ∥w⊤α∥1.

R := {1, … ,n} ∖ I

8 / 15



Stochastic control example
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Discard scenarios
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Discard more...
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Result: optimistic controller
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Result: reduced conservatism
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Takeaway
Kernel mean embedding in RKHS allows efficient optimization in
distribution space

It can be combined with other methods like DL, e.g., MMD-GAN,
adversarial training, blah blah blah.

This paper focus on reducing conservativeness of the scenario approach
to stochastic programming and control. What if we wish to be more
robust?

Kernel Distributionally Robust Optimizaiton (K-DRO. See the next
paper: Z et al., 20.)

min
P

f(P) becomes  min
μp

f(P).
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Thank you! This talk is based on
Z, Diehl, Schölkopf, 2020. A Kernel Mean Embedding Approach to Reducing
Conservativeness in Stochastic Programming and Control. L4DC

Z, Jitkrittum, Diehl, Schölkopf, 2020. Kernel Distributionally Robust
Optimization. Preprint

Z, Jitkrittum, Diehl, Schölkopf, 2020. Worst-Case Risk Quantification under
Distributional Ambiguity using Kernel Mean Embedding in Moment Problem.
Preprint

Z, Muandet, Diehl, Schölkopf, 2019. A New Distribution-Free Concept for
Representing, Comparing and Propagating Uncertainty in Dynamical Systems with
Kernel Probabilistic Programming. IFAC 2020
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