Jia-Jie Zhu^{1,3}, Christina Kouridi^{2,3}, Yassine Nemmour³, Bernhard Schölkopf³

¹Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany

> ²InstaDeep Ltd. London, United Kingdom

³Max Planck Institute for Intelligent Systems Tübingen, Germany

The 25th International Conference on Artificial Intelligence and Statistics (AISTATS) March, 2022

Learning under distribution shift **Empirical Risk Minimization** $\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

Learning under distribution shift **Empirical Risk Minimization** $\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under <u>data distribution shifts</u>, when $Q \ (\neq P_0)$

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under <u>data distribution shifts</u>, when $Q \ (\neq P_0)$

Distributionally Robust Learning

 $\min_{\theta} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q} L(\theta, \xi)$

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under data distribution shifts, \bullet when $Q \ (\neq P_0)$

Distributionally Robust Learning

$\min_{\theta} \sup_{\substack{\varrho \in \mathcal{M}}} \mathbb{E}_{\mathcal{Q}} L(\theta, \xi)$

• Minimize risk under a local worst-case distribution Q

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under <u>data distribution shifts</u>, when $Q \ (\neq P_0)$

Distributionally Robust Learning

 $\min_{\theta} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q} L(\theta, \xi)$

- \cdot Minimize risk under a local worst-case distribution Q
- $\begin{array}{l} \text{ Distribution shift described by an <u>ambiguity set } \mathscr{M}. \\ \text{ Example: maximum mean discrepancy-ball} \\ \{ \underline{\textit{Q}}: \mathrm{MMD}(\underline{\textit{Q}}, \hat{\textit{P}}_N) \leq \rho \} \text{ or Wasserstein-ball} \end{array}$ </u>

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under <u>data distribution shifts</u>, when $Q \ (\neq P_0)$

Distributionally Robust Learning

$\min_{\theta} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q} L(\theta, \xi)$

- \cdot Minimize risk under a local worst-case distribution Q
- Distribution shift described by an <u>ambiguity set</u> \mathcal{M} . Example: maximum mean discrepancy-ball $\{\underline{Q}: MMD(\underline{Q}, \hat{P}_N) \leq \rho\}$ or Wasserstein-ball

 $MMD_{\mathscr{H}}(\mathcal{Q}, \mathcal{P}) := \sup_{\|f\|_{\mathscr{H}} \le 1} \int f d(\mathcal{Q} - \mathcal{P})$ $= \mathbb{E}_{x, x' \sim \mathcal{Q}} k(x, x') + \mathbb{E}_{y, y' \sim \mathcal{P}} k(y, y')$

 $-2\mathbb{E}_{x\sim 0, y\sim P}k(x, y)$

$\sim P$ —	▶ (
$\sim Q$ $\int \phi dP = \mu$	•

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under data distribution shifts, when $Q \ (\neq P_0)$

Distributionally Robust Learning

$\min_{\theta} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q} L(\theta, \xi)$

- Minimize risk under a local worst-case distribution Q
- Distribution shift described by an <u>ambiguity set</u> \mathcal{M} . Example: maximum mean discrepancy-ball $\{Q: MMD(Q, \hat{P}_N) \le \rho\}$ or Wasserstein-ball

 $= \mathbb{E}_{x,x'\sim Q} k(x,x') + \mathbb{E}_{y,y'\sim P} k(y,y')$ $-2\mathbb{E}_{x\sim Q,y\sim P} k(x,y).$

• We can bound performance under Q ($\neq P_0$) beyond statistical fluctuation (classical learning theory)

Empirical Risk Minimization

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\theta, \xi_i), \quad \xi_i \sim P_0$

- Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} l(\hat{\theta}, \xi)$
- Not robust under data distribution shifts, \bullet when $Q \ (\neq P_0)$

Distributionally Robust Learning

$\min_{\theta} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q} L(\theta, \xi)$

- Minimize risk under a local worst-case distribution Q
- Distribution shift described by an <u>ambiguity set</u> \mathcal{M} . Example: maximum mean discrepancy-ball $\{Q: MMD(Q, \hat{P}_N) \le \rho\}$ or Wasserstein-ball

- We can bound performance under Q ($\neq P_0$) beyond statistical fluctuation (classical learning theory)
- Question: how do we actually solve an MMDconstrained optimization problem? (Non-trivial!)

Primal DRO (not solvable as it is)

(DRO) min sup $\mathbb{E}_{Q}l(\theta,\xi)$ $\stackrel{\sim}{\underset{\sim}{\longrightarrow}} \sim Q$

Primal DRO (not solvable as it is)

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Primal DRO (not solvable as it is) (DRO) $\min_{\theta} \sup_{MMD(Q,\hat{P}) \leq \epsilon} \mathbb{E}_{Q} l(\theta, \xi)$ $\stackrel{\sim}{\underset{MMD(Q,\hat{P}) \leq \epsilon}{\underset{MMD(Q,\hat{P}) \atop_{MMD(Q,\hat{P}) \leq \epsilon}{\underset{MMD(Q,\hat{P}) \atop_{MMD(Q,\hat{P}) \leq \epsilon}{\underset{MMD(Q,\hat{P}) \atop_{MMD(Q,\hat{P}) \atop_{MM$

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] *DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).*

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Geometric intuition: using kernel approximations as robust surrogate losses

Primal DRO (not solvable as it is)

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Geometric intuition: using kernel approximations as robust surrogate losses

 Extension to more general ambiguity geometry $\min_{\theta, f \in \mathcal{H}} \delta^*_{\mu(\mathcal{M})}(f) \quad \text{subject to } l(\theta, \cdot) \leq f.$ $\delta^*_{\!\mathscr{C}}$ denotes the support function of the set \mathscr{C}

Many alg. as special cases, e.g., SVM, multi-kernel...

Primal DRO (not solvable as it is)

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] *DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).*

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Geometric intuition: using kernel approximations as robust surrogate losses

• Extension to more general ambiguity geometry $\min_{\substack{\theta,f\in\mathscr{H}\\ \mathscr{C}}} \delta^*_{\mu(\mathscr{M})}(f) \quad \text{subject to } l(\theta,\cdot) \leq f.$ $\delta^*_{\mathscr{C}} \text{ denotes the support function of the set } \mathscr{C}$

Many alg. as special cases, e.g., SVM, multi-kernel...

 Decision variable f can be interpreted as the test function in the kernel two-sample test

rnel st

Primal DRO (not solvable as it is)

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] *DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).*

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Geometric intuition: using kernel approximations as robust surrogate losses

• Extension to more general ambiguity geometry $\min_{\substack{\theta,f\in\mathscr{H}\\ \mathscr{C}}} \delta^*_{\mu(\mathscr{M})}(f) \quad \text{subject to } l(\theta,\cdot) \leq f.$ $\delta^*_{\mathscr{C}} \text{ denotes the support function of the set } \mathscr{C}$

Many alg. as special cases, e.g., SVM, multi-kernel...

- Decision variable f can be interpreted as the test function in the kernel two-sample test
- Comparison with Wasserstein DRO:

rnel st

Primal DRO (not solvable as it is)

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] *DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).*

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Geometric intuition: using kernel approximations as robust surrogate losses

• Extension to more general ambiguity geometry $\min_{\substack{\theta,f\in\mathscr{H}\\ \mathscr{C}}} \delta^*_{\mu(\mathscr{M})}(f) \quad \text{subject to } l(\theta,\cdot) \leq f.$ $\delta^*_{\mathscr{C}} \text{ denotes the support function of the set } \mathscr{C}$

Many alg. as special cases, e.g., SVM, multi-kernel...

- Decision variable f can be interpreted as the test function in the kernel two-sample test
- Comparison with Wasserstein DRO:
- MMD enjoys closed-form estimator for fast computation and favorable convergence rate

rnel st

Primal DRO (not solvable as it is)

Kernel DRO Theorem (simplified). [Z. et al. AISTATS 2021] DRO problem is equivalent to the a dual kernel learning problem, i.e., (DRO)=(K).

(K)
$$\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}} \text{ subject to } l(\theta, \cdot) \leq \epsilon$$

cf. Kantorovich duality in optimal transport (OT) and Moreau-Yosida regularization in convex analysis

Geometric intuition: using kernel approximations as robust surrogate losses

• Extension to more general ambiguity geometry $\min_{\theta, f \in \mathcal{H}} \delta^*_{\mu(\mathcal{M})}(f)$ subject to $l(\theta, \cdot) \leq f$. $\delta^*_{\!\mathscr{C}}$ denotes the support function of the set \mathscr{C}

Many alg. as special cases, e.g., SVM, multi-kernel...

- Decision variable *f* can be interpreted as the test function in the kernel two-sample test
- Comparison with Wasserstein DRO:
- MMD enjoys closed-form estimator for fast computation and favorable convergence rate
- For general ML loss $l(\theta, \cdot)$ with nonlinear models, there exists no exact reformulation of Wasserstein DRO. Kernel DRO can be applied in such cases thanks to the universality of RKHSs.

Example. Certified adversarially robust learning (Classify the presence of glasses)

Example. Certified adversarially robust learning (Classify the presence of glasses)

Recall: Kernel DRO Theorem: (K) $\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon ||f||_{\mathcal{H}}$ subject to $l(\theta, \cdot) \leq f$

Example. Certified adversarially robust learning (Classify the presence of glasses)

Recall: Kernel DRO Theorem: (K) $\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}}$ subject to $l(\theta, \cdot) \leq f$ We construct a solution: $f(x) = \sup\{l(\theta, z)k(z, x)\}$ $l(\theta, \cdot)$ Z

•kernel choice: $k(x, x') := e^{-c(x, x')/\sigma}$ (OT in log-scale) c: transport cost in OT, $\sigma>0:$ bandwidth

Example. Certified adversarially robust learning (Classify the presence of glasses)

 \boldsymbol{Z}

Recall: Kernel DRO Theorem: (K) $\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}}$ subject to $l(\theta, \cdot) \leq f$ We construct a solution: $f(x) = \sup\{l(\theta, z)k(z, x)\}$

•kernel choice: $k(x, x') := e^{-c(x, x')/\sigma}$ (OT in log-scale) c: transport cost in OT, $\sigma>0:$ bandwidth

✓ infinite constraint satisfied: $l(\theta, x) \leq f(x), \forall x$

 $l(\theta, \cdot)$

Example. Certified adversarially robust learning (Classify the presence of glasses)

 \boldsymbol{Z}

Recall: Kernel DRO Theorem: (K) $\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}}$ subject to $l(\theta, \cdot) \leq f$ We construct a solution: $f(x) = \sup\{l(\theta, z)k(z, x)\}$

•kernel choice: $k(x, x') := e^{-c(x, x')/\sigma}$ (OT in log-scale) *c*: transport cost in OT, $\sigma > 0$: bandwidth

✓ infinite constraint satisfied: $l(\theta, x) \leq f(x), \forall x$ \checkmark applies to loss with practical models, e.g., DNN

 $l(\theta, \cdot)$

Example. Certified adversarially robust learning (Classify the presence of glasses)

Recall: Kernel DRO Theorem: (K) $\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}}$ subject to $l(\theta, \cdot) \leq f$ We construct a solution: $f(x) = \sup\{l(\theta, z)k(z, x)\}$

•kernel choice: $k(x, x') := e^{-c(x, x')/\sigma}$ (OT in log-scale) c: transport cost in OT, $\sigma>0:$ bandwidth

✓ infinite constraint satisfied: $l(\theta, x) \leq f(x), \forall x$ \checkmark applies to loss with practical models, e.g., DNN

 $l(\theta, \cdot)$

Example. Certified adversarially robust learning (Classify the presence of glasses)

Recall: Kernel DRO Theorem: (K) $\min_{\theta, f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} f(\xi_i) + \epsilon \|f\|_{\mathcal{H}}$ subject to $l(\theta, \cdot) \leq f$ We construct a solution: $f(x) = \sup\{l(\theta, z)k(z, x)\}$

•kernel choice: $k(x, x') := e^{-c(x, x')/\sigma}$ (OT in log-scale) c: transport cost in OT, $\sigma>0:$ bandwidth

✓ infinite constraint satisfied: $l(\theta, x) \leq f(x), \forall x$ \checkmark applies to loss with practical models, e.g., DNN

 $l(\theta, \cdot)$

Distributional robustness certificate. $\mathcal{W}_{c}(\cdot, \cdot)$: OT metric with transport cost c $\epsilon_N \rightarrow 0$, computable robustness certificate: $\sup_{\mathcal{U}_{c}(Q,P_{0})\leq\rho} \mathbb{E}_{Q} \ln l(\hat{\theta},\xi)$ $\leq \ln \left\{ \frac{1}{N} \sum_{i=1}^{N} \sup_{z} \left\{ l(\hat{\theta}, z) k(z, \xi_{i}) \right\} \right\} + \frac{\rho}{\sigma} + \epsilon_{N}$

ARKS objective

• We proposed a distributionally robust learning algorithm by constructing solutions using the duality theorem of Kernel DRO.

- We proposed a distributionally robust learning algorithm by constructing solutions using the duality theorem of Kernel DRO.
- Exploiting the connection between OT and kernel methods, we provide a <u>distributional</u> <u>robustness certificate</u>.

- We proposed a distributionally robust learning algorithm by constructing solutions using the duality theorem of Kernel DRO.
- Exploiting the connection between OT and kernel methods, we provide a distributional robustness certificate.
- In contrast with many DRO algorithms, our distributionally robust learning algorithm applies to large-scale learning with DNNs. This is enabled by the kernel DRO theorem that allows us to use <u>regularized kernel</u> approximation for general functions outside **RKHSs**.

- We proposed a distributionally robust learning algorithm by constructing solutions using the duality theorem of Kernel DRO.
- Exploiting the connection between OT and kernel methods, we provide a <u>distributional</u> robustness certificate.
- In contrast with many DRO algorithms, our distributionally robust learning algorithm applies to large-scale learning with DNNs. This is enabled by the kernel DRO theorem that allows us to use <u>regularized kernel</u> <u>approximation for general functions outside</u> <u>RKHSs</u>.

Interesting future directions

- Design specific kernels for robustness beyond normball perturbation
- Physics, information geometry, and general dynamic OT
- Causal inference via distributional robustness

References

- **Zhu**, J.-J., Jitkrittum, W., Diehl, M. & Schölkopf, B. Kernel Distributionally Robust Optimization. AISTATS 2021
- **Zhu**, J.-J., Kouridi, C., Nemmour, Y. & Schölkopf, B. Adversarially Robust Kernel Smoothing. AISTATS 2022

Code

- KDRO: <u>https://github.com/jj-zhu/kdro</u>
- ARKS: <u>https://github.com/christinakouridi/arks</u>

Website: <u>jj-zhu.github.io</u>