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𝒲c( ⋅ , ⋅ ) c
ϵN → 0

sup
𝒲c(Q,P0)≤ρ

𝔼Qln l( ̂θ, ξ)

≤ ln{ 1
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ARKS objective

} +
ρ
σ

+ ϵN

Distributionally robust learning with ARKS
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Interesting future directions
• Design specific kernels for robustness beyond norm-

ball perturbation
• Physics, information geometry, and general dynamic OT
• Causal inference via distributional robustness
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