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Robust optimization

Empirical risk minimization (ERM) Robust optimization (RO)
(robust control, games)

(sample average approximation (SAA))

min sup /(6, &)
0 =¥/

P
. Do well on average ~ ©ree P L e Do well in the worst case
o Strength: high-performance (optimal) e Strength: robustness
 \WWeakness: fragile — adversarial attacks,  Weakness: conservative — worst

sim2real transfer, safety/off-policy in R?I)_ case doesn’t often happen

Image credit: Mnih’13, MudJuCo, Houska and Villanueva ‘19, Hewing et al.’18



Combine the strengths of ERM and RO:
distributionally robust optimization (DRO)

(EH{I\/I)min = l(@, 5) ‘ m.

0 E~P 111 SUp |= Pl (9, 5 ) (DRO)
. 9 [Delage and Ye 2010, Scarf 1958]
roy min sup [(G, &) PE
‘9 Find the worst-case distribution!
5 E% Problem of Moments [Stieltjes, Hausdorff, Hamburger, ...]
O¢
» Robustifies against a set of probability measures A& (ambiguity set), e.q., ) ; .
e # can be a metric-ball centered at IA’ e.d., using the popular Wasserstein ° .
metric, sets in RKHSs [this talk]. e ® .
* One way of constructing ambiguity region: one can quantify the ® .
empirical mean convergence rate y(P, Pt e) < €. ' P .
* Active research area: choosing better ambiguity regions . o

* This talk provides a functional analysis and optimization .
perspective instead of statistics .



Learning with kernels

* A kernel is a symmetric function
k: X X2 — R, e.g., Gaussian kernel
k(x,x") = exp (—Hx — x’H% / 202).

« A p.d. k corresponds to a Hilbert space # (RKHS), which
satisfies the reproducing property

J&) ={f,d(X)) 3. VNfE X ,x € X,

@(x) := k(x, - ) is the canonical feature of 7.

» If Z is alarge (dense in C), ¥4 is a metric on .

 We can generalize to the more general integral probability
metric (IPM)

IPM(F; P, Q) := ;up de(P — Q). duality
cF
Special cases: U = ng dP is the (kernel) mean embedding of P in 7 .
F = {f: lIfllsr £ 1} —> Maximum Mean Discrepancy (MMD) | |
F = {f: Iflly, < 1}—> Wasserstein (type-1) 1 can be viewed as a generalized moment vector
. ip <

e.g., let ¢p(x) = [x,x?]" (related: Lasserre moment-SOS)

® lllustration design inspired by Gretton, Sutherland, Jitkrittum NeurlPS 2019 tutorial



Smooth is robust: Kernel DRO

©RO) min sup [E (0, £)
0 pPex

(P) minsup{ —pl(0,€): Jg[; dP = u,u € Cg}

0 P

Theorem (Kernel DRO duality, Zhu et al. ’20). DRO (P) is s

equivalent to solving

(D) min 6%(f) subject to I(0, - ) < 1,
o.fceH

5(2(]”) is the support function, e.g., Epf + €||f]] 5.
(Note: no need to estimate ||/(0, - )|| 5!)

Geometric intuition |
[0, -)
Smoothness of / « Distributional robustness (« Size of #)
Intuition: flatten the curve, smooth is robust

Example. Uncertain least squares
[El Ghaoui Lebret '97]

minimize (0, &) := ||A(€) - 0 — b||3

Given historical samples 51, 52, ooy fN

perturbation A (test distribution)

Robustifying with kernels
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6 # . special case SDP/SOS; generalization to IPM, e.g., W-1




Distributionally robust nonlinear optimization for
machine learning and control

. ‘ Adversarially Robust Kernel Smoothing
0 pex |
[: general nonlinear function, i.e., loss
: £ ' with DNN, [ & . Kernel DRO handles

' 0 ; this by finding a majorant f € #, with

no need to estimate ||I(0, - )|| 5

(D) min 65(f) subjectto I(0,-) < f
O.feH
DRO for stochastic model predictive control (MPC)

with nonlinear constraints 3 1
[NSZ ,21 ] Test error on Fashio-

MNIST, 5-layer CN
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Conclusions Future directions

* A generalized dual program for solving

DRO with general ambiguity sets and « Generalizaiton and statistical
IPM-balls, with weak assumptions on the hounds of Kernel DRO

loss function (no need to estimate

H 1(9, . )H %) * Lam-Zeng 2021, Zhu in prep

+ Kernel DRO: Maximizing w.r.. a  Kernel SIP, chance constraints...

distribution — finding a smooth »  Marteau-Ferey-Bach-Rudi 2020, Zhu et al. 2021, in
| lated: L t-
surrogate function. For example, prep (related: Lasserre moment-SOS)

(D) min Epf+e€llfllgzy s-t.010,-) <[ * Applications to high-dim. data,
OJeX A : deep models, adversarial learning,
e Takeaway [0, - ) fairness, control...

o Large (universal) RKHSs as dual * Kernel DRO offers unique benefits but is not nearly as
popular as the Wasserstein distance.
spaces for DRO

 Flatten the curve, smooth is robust
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Thank you!
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