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Robust optimization

 


• Do well on average

• Strength: high-performance (optimal)

• Weakness: fragile — adversarial attacks, 

sim2real transfer, safety/off-policy in RL

min
θ

𝔼
ξ∼ ̂P

l(θ, ξ) 


• Do well in the worst case

• Strength: robustness

• Weakness: conservative — worst 

case doesn’t often happen

min
θ

sup
ξ∈𝒰

l(θ, ξ)

Empirical risk minimization (ERM)

(sample average approximation (SAA))

Image credit: Mnih’13, MuJuCo, Houska and Villanueva ‘19,  Hewing et al.’18

Robust optimization (RO)

(robust control, games)

Fig. 2: Planned trajectory with active chance constraints.
Shown is the mean trajectory of the car with 1-� confidence
level perpendicular to the car’s mean orientation.

outer approximation of the confidence region using the direc-
tion of largest variance. Now µ 2 B

xc(r�
p
�2
n(p)�max(⌃))

implies E
x̃
p ✓ B

x
c (r), which means Pr(x 2 B

x
c (r)) �

Pr(x 2 E
x̃
p ) � Pr(x 2 E

x
p ) = p.
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where ⌃XY
i 2 R2⇥2 is the marginal variance of the joint

distribution of Xi and Yi. This procedure is similar to
constraint tightening in robust control. Here the amount of
tightening is related to an approximate confidence region for
the deviation from the mean system state.

Constraint (15) as well as the cost (12) require the variance
dynamics. The next section proposes a further simplification
to reduce computational cost by considering an approximate
evolution of the state variance.

E. Time-Varying Approximation of Variance Dynamics
The variance dynamics in (14b) require N

2 (n
2 + n)

additional variables in the optimization problem and can
increase computation time drastically. We trade off accuracy
in the system description with computational complexity
by evaluating the system variance around an approximate
evolution of the state and input. This state-action trajectory
can typically be chosen as a reference to be tracked or by
shifting a solution of the MPC optimization problem at an
earlier time step. Denoting a point on the approximate state-
action trajectory with (µ̄x

i , ūi), the approximate variance
dynamics are given by
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with Āi = [rxf(µ̄x
i , ūi) Bd]. The variance along the tra-

jectory thus does not depend on any optimization variable
and can be computed before the state measurement becomes
available at each sampling time. The precomputed variance
is then used to satisfy the chance constraints approximately,
by replacing ⌃XY with ⌃̄XY in (15). The resulting set is
denoted X̄ (⌃̄x

i ,⇥i). Figure 2 shows an example of a planned
trajectory with active chance constraints according to this
formulation with �2

2(p) = 1.
In the following, we use similar ideas to reduce the

computational complexity of the required GP evaluations

by dynamically choosing inducing inputs in a sparse GP
approximation.

F. Dynamic Sparse GP
Sparse approximations as outlined in Section II-C can

considerably speed up evaluation of a GP, with little deterio-
ration of prediction quality. For fast applications with high-
dimensional state-input spaces, however, the computational
burden can still be prohibitive.

We therefore propose to select inducing inputs locally at
each sampling time, which relies on the idea that in MPC
the area of interest at each sampling time typically lies close
to a known trajectory in the state-action space. Similar to the
approximation presented in the previous subsection, inducing
inputs can then be selected along the approximate trajectory,
e.g. according to a solution computed at a previous time step.

We illustrate the procedure using a two-dimensional ex-
ample in Figure 3 showing the dynamic approximation for
a simple double integrator. Shown is the contour plot of the
posterior variance of a GP with two input dimensions x1 and
x2. Additionally, two trajectories generated from an MPC are
shown. The solid red line corresponds to a current prediction
trajectory, while the dashed line shows the previous predic-
tion, which is used for local approximation of the GP. As
the figure illustrates, full GP and sparse approximation are
in close correspondence along the predicted trajectory of the
system.

The dynamic selection of local inducing points in a
receding horizon fashion allows for an additional speed-up
by computing successive approximations adding or removing
single inducing points by means of rank 1 updates [26].
These are applied to a reformulation of (5), which offers
better numerical properties [14] and avoids inversion of the
large matrix Qa
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of single inducing points corresponds to a single line and
column changing in ⌃�1. The corresponding Cholesky fac-
torizations can thus efficiently be updated [27].

G. Resulting Control Formulation for Autonomous Racing
We integrate the approximations presented in the previous

sections in the learning-based MPC problem in (13) resulting
in the following approximate optimization problem

min
U, V

E

0
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A (17a)

s.t. µx
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i , ui), (17b)
⇥i+1 = ⇥i + vi, (17c)
µx
i+1 2 X̄ (⌃̄x

i+1,⇥i+1), (17d)
ui 2 U , (17e)
µx
0 = x(k), ⇥0 = ⇥(k) , (17f)
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Fig. 2: In contrast to Scenario-Tree MPC from Figure 1, Tube MPC optimizes a
single set-valued tube in the state space, which encloses all possible scenarios. The
tube (shaded area) may not intersect with the infeasible region in the state-space, in
this case an obstacle.

Due to its importance among robust MPC methods, the next section is devoted to
presenting the main strategies used to construct tube MPC based control algorithms.

5 Numerical Methods for Tube MPC

In this section we present strategies to construct tube model predictive control algo-
rithms. These strategies present some answers to the two main difficulties of tube
MPC: the outer optimization over feedback laws and the practical construction of
tubes for the inner optimization. Both problems can be addressed by appropriate
parametrizations, first, of the feedback law, and second, of the reachable set outer
approximations.

5.1 Feedback Parametrization

The most common class of feedback parametrizations for constructing approxima-
tions of (3) is that of affine feedback laws of the form

µ̃[K,k](t,x) = K(t)x+ k(t) .

If we substitute µ = µ̃[K,k] in (3), the new optimization variables are the matrix-
valued function K : R → Rnu ×Rnx and the vector-valued additive offset function
k : R→ Rnu . In this case, the control constraint,

∀t ∈ [0,T ], K(t)X(t, µ̃[K,k],x0)+ k(t)⊆ U ,

has to be added explicitly in order to ensure that the control law is feasible. Clearly,
this and other feedback parameterizations lead to conservative approximations

Empirical dist. ̂P =
N

∑
i=1

1
N

δξi

uncertainloss/cost
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Combine the strengths of ERM and RO: 
distributionally robust optimization (DRO)

• Robustifies against a set of probability measures  (ambiguity set), e.g., 


•  can be a metric-ball centered at , e.g., using the popular Wasserstein 
metric, sets in RKHSs [this talk].

• One way of constructing ambiguity region: one can quantify the 

empirical mean convergence rate .

• Active research area: choosing better ambiguity regions 

• This talk provides a functional analysis and optimization 
perspective instead of statistics

𝒦
𝒦 ̂P

γ( ̂P, Ptrue) ≤ ϵ

Find the worst-case distribution!

Problem of Moments [Stieltjes, Hausdorff, Hamburger, …]

δξi

̂P

min
θ

sup
P∈𝒦

𝔼Pl(θ, ξ) (DRO)

[Delage and Ye 2010, Scarf 1958]min
θ

sup
ξ∈𝒰

l(θ, ξ)(RO)

min
θ

𝔼
ξ∼ ̂P

l(θ, ξ)(ERM)

Ptrue
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Learning with kernels
• A kernel is a symmetric function 

, e.g., Gaussian kernel 
.


• A p.d.  corresponds to a Hilbert space  (RKHS), which 
satisfies the reproducing property 

,  
 is the canonical feature of .


• If  is a large (dense in ),  is a metric on . 


• We can generalize to the more general integral probability 
metric (IPM) 

         . 

Special cases:

—> Maximum Mean Discrepancy (MMD)

—> Wasserstein (type-1)

k : 𝒳 × 𝒳 → ℝ
k(x, x′ ) = exp (−∥x − x′ ∥2

2 / 2σ2)
k ℋ

f(x) = ⟨ f, ϕ(x)⟩ℋ, ∀f ∈ ℋ, x ∈ 𝒳
ϕ(x) := k(x, ⋅ ) ℋ

ℋ C γℋ 𝒫

IPM(ℱ; P, Q) := sup
f∈ℱ ∫ f d(P − Q)

ℱ = {f : ∥f∥ℋ ≤ 1}
ℱ = {f : ∥f∥lip ≤ 1}

ℋ

 is the (kernel) mean embedding of  in .


 can be viewed as a generalized moment vector 
e.g., let  (related: Lasserre moment-SOS)

μ := ∫ ϕ dP P ℋ

μ
ϕ(x) = [x, x2]⊤

μP := ∫ ϕ dP

Illustration design inspired by Gretton, Sutherland, Jitkrittum NeurIPS 2019 tutorial

duality

𝒫

γℋ(P, Q)}
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Theorem (Kernel DRO duality, Zhu et al. ’20). DRO (P) is 
equivalent to solving  
              , 

 is the support function, e.g., . 
(Note: no need to estimate !)

(D) min
θ, f∈ℋ

δ*𝒞( f ) subject to l(θ, ⋅ ) ≤ f

δ*𝒞( f ) 𝔼 ̂P f + ϵ∥f∥ℋ
∥l(θ, ⋅ )∥ℋ

f

l(θ, ⋅ )
Geometric intuition

Smooth is robust: Kernel DRO

Smoothness of  ⬌ Distributional robustness (⬌ Size of )

Intuition: flatten the curve, smooth is robust

f ℋ

min
θ

sup
P∈𝒦

𝔼Pl(θ, ξ)(DRO)
ℋ

Example. Uncertain least squares  
[El Ghaoui Lebret ’97]

minimize l(θ, ξ) := ∥A(ξ) ⋅ θ − b∥2
2

Given historical samples ξ1, ξ2, …, ξN

(a) Robust least squares loss (b) Geometric interpretation

Figure 3: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain ✓ ⇤ and tested it on a test dataset
of 500 samples. We then vary the perturbation � from 0 to 4. (b) (red) is the dual optimal solution
f⇤

0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
bars the empirical distribution. We can observe that f⇤

0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.

4 Numerical studies227

This section demonstrates the theoretical insights of K-DRO in action. It is not a benchmark of228

state-of-art performances. See the appendix for more results. The code will be available online229

4.1 Distributionally robust solution to uncertain least squares230

We first consider a robust least squares problem adapted from [17], which demonstrated an im-231

portant application of RO to statistical learning historically. (See also [9, Ch. 6.4].) The task232

is to minimize the objective kA✓ � bk22 w.r.t. ✓. A is modeled by A(⇠) = A0 + ⇠A1, where233

⇠ 2 X is uncertain, X = [�1, 1], and A0, A1 2 R10⇥10, b 2 R10 are given. We compare234

K-DRO against using (a) empirical risk minimization (ERM; also known as sample average ap-235

proximation) that minimizes 1
N

PN
i=1 kA(⇠i) ✓ � bk22, (b) worst-case RO via SDP from [17]. We236

consider a data-driven setting with given samples {⇠i}Ni=1. We formulate the K-DRO problem as237

min✓ maxP2P,µ2C E⇠⇠P kA(⇠) ✓� bk22 subject to
R
�dP = µ, where we choose the uncertainty238

set to be C = {µ : kµ� µP̂ kH  ✏}, where µP̂ =
PN

i=1
1
N �(⇠i).239

Empirical samples {⇠i}Ni=1(N = 10) are generated uniformly from [�0.5, 0.5]. We then apply K-240

DRO formulation (10). To test the solution, we create a distribution shift by generating test samples241

from [�0.5 · (1+�), 0.5 · (1+�)], where � is a perturbation varying within [0, 4]. Figure 3a shows242

this comparison. As the perturbation increases, ERM quickly lost robustness. On the other hand, RO243

is the most robust with the trade-off of being conservative. As expected, K-DRO achieves some level244

of optimality while retaining robustness. We then ran K-DRO with fewer empirical samples (N = 5)245

to show the geometric interpretations. We plot the optimal dual solution f⇤

0 + f⇤ in Figure 3b.246

Recall it is an over-estimator of the loss l(✓, ·). We solve (7) to obtain a worst-case distribution P ⇤.247

Comparing P ⇤ with P̂ , we can observe the adversarial behavior of the worst-case distribution. See248

the caption for more description.249

4.2 Distributionally robust classification250

We now show how kernel-DRO can be applied to train a classification model g✓ : x 7! y. We consider251

a two-dimensional (x 2 R2), two-class classification problem (y 2 {�1, 1}). Samples from class 1252

(red) are drawn from p(x|y = 1) = N ((5, 0)>, I), while that from class -1 (blue) are generated from253

N
�
(3, 1)>, diag(1/2, 2)

�
. The class prior probability is uniform i.e., p(y = �1) = p(y = 1) = 1/2.254

The training samples are shown in Figure 4a. The model is trained by solving K-DRO (10), where255

⇠i := [xi, yi], with the hinge loss l(✓, ⇠) := max(0, 1� g✓(x)y). We use a product kernel of the form256

k((x, y), (x0, y0)) = kX(x, x0)kY (y, y0), where both kX , kY are Gaussian kernels. For simplicity,257

we use a linear classifier g✓(x) := sign(m>x+ c) where ✓ := (m, c).258
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(test distribution)

(P) min
θ

sup
P,μ {𝔼Pl(θ, ξ) : ∫ ϕ dP = μ, μ ∈ 𝒞}

(a) Robust least squares loss (b) Geometric interpretation
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0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
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0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.
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     f

Robustifying with kernels

What if ?f ≡ c ∈ ℝ

: special case SDP/SOS; generalization to IPM, e.g., W-1ℋ6



Distributionally robust nonlinear optimization for 
machine learning and control

DRO for stochastic model predictive control (MPC) 
with nonlinear constraints

[NSZ ’21]

DRO  

Adversarially Robust Kernel Smoothing
[ZKNS ’21]min

θ
sup
P∈𝒦

𝔼Pl(θ, ξ)(DRNO)

: general nonlinear function, i.e., loss 
with DNN, . Kernel DRO handles 
this by finding a majorant , with 
no need to estimate 

l
l ∉ ℋ

f ∈ ℋ
∥l(θ, ⋅ )∥ℋ

f

l(θ, ⋅ )

(D) min
θ, f∈ℋ

δ*𝒞( f ) subject to l(θ, ⋅ ) ≤ f

Code: jj-zhu.github.io/research 7

https://jj-zhu.github.io/research/


• Generalizaiton and statistical 
bounds of Kernel DRO

• Lam-Zeng 2021, Zhu in prep


• Kernel SIP, chance constraints…

• Marteau-Ferey-Bach-Rudi 2020, Zhu et al. 2021, in 

prep (related: Lasserre moment-SOS)


• Applications to high-dim. data, 
deep models, adversarial learning, 
fairness, control…

• Kernel DRO offers unique benefits but is not nearly as 

popular as the Wasserstein distance.

Conclusions
• A generalized dual program for solving 

DRO with general ambiguity sets and 
IPM-balls, with weak assumptions on the 
loss function (no need to estimate 

)


• Kernel DRO: Maximizing w.r.t. a 
distribution → finding a smooth 
surrogate function. For example, 




• Takeaway


• Large (universal) RKHSs as dual 
spaces for DRO


• Flatten the curve, smooth is robust

∥l(θ, ⋅ )∥ℋ

(D) min
θ,f∈ℋ

𝔼 ̂P f+ϵ∥f∥ℋ s . t . l(θ, ⋅ ) ≤ f

Future directions

f

l(θ, ⋅ )

Code: jj-zhu.github.io/research 8

https://jj-zhu.github.io/research/
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