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Mirror descent
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We also define the Bregman divergence associated withf as

By(x,y)= 0(x) — &y) = VIgly) " (x — ¥).
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Mirror descent update:
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Example of MD: Euclidean norm

Mirror map ®(x) = 3||x||3.
e



Example of MD: Euclidean norm

Mirror map ®(x) = 3 ||x||3.

MD:
. 1
Xk+1 = argmin f(xg) + ng(x —xx) + —||x — Xk”%.
X

) S
This is equivalent to (sub-)GD with step 7.
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Example of MD: negative entropy

Mirror map ®(x) =
—




Example of MD: negative entropy

9+ 1)

Mirror map ®(x) =39 ; x(i )Iogx( ). The resulting Bregman divergence is the
KL-divergence Do Q@ 4 x(i )Iog Y(’l'
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Example of MD: negative entropy

Mirror map ®(x) = 3¢, x(i) log x(i). The resulting Bregman divergence is the

KL-divergence Do (x,y) = 329, x(i) log %

If we restrict x to a (discrete probability) simplek 1" x = 1/then the MD update

1
Xti1 1' f(x¢) —l—ﬁ—r(x — x¢) + —Bo(x, xt)
- = @ @O OO
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has the closed-form




MD convergence

Let ® be p-strongly convex in || - ||. and f be convex and

L-Lipschitz w.r.t. || - ||. Then mirror descent with n =T \/ satlsfles
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MD convergence

Let ® be p-strongly convex in || - ||. Let R? = sup, ®(x) — ®(x1), and f be convex and
L-Lipschitz w.r.t. || - ||. Then mirror descent with n = %\/ 2 satisfies

(12 ) - fx) <RLﬁ

For example, for negative entropy R < \/log(d).
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Stochastic (sub-)gradient descent

Stochastic oracle: a
@) € %f(x).!

Then, SGD update rule:

Xe41 = Xe — Ne8(Xt)-




Stochastic (sub-)gradient descent

X
Stochastic oracle: o%\*
E g(x) € 9f(x). Yo X
X

Then, SGD update rule:

Xep1 = Xt — Ne8(Xt).
~ — : .
Convergence. Let@el a-strongly convex,l}and assume that the stochastic oracle is such
that E[|g(x)||> < B%. Then SGD with 77, = —z2+ satisfies
— & 04(%51)
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E Xk | = F(x*) < ——.
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(Skip) stochastic mirror descent (S-MD)

Let x; € argminy ®(x), and
. . T 1
Xe+1 = argmin f(x;) (x — x¢) + = Bo(x, xt).
x 7

Convergence. Let ® be a mirror map 1-strongly convex. Let R? = sup, ®(x) — ®(xy).
Let f be convex and f3-smooth w.r.t. || -||. Assume that the stochastic oracle is such

that E[|[Vf(x) — &(x)[|2 < 0® Then S-MD with stepsize 5 +1/77 and n = g\@ satisfies

1< ,6R2
Ef| - —f(x*)<R



Compare the basic gradient descent with SGD for average loss functlons
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where j; is drawn uniformly random.
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Optimization under distributional uncertainty

Empirical risk minimization

1 Py
9@%( & P}Epelﬂ%)

» Robust under statistical fluctuation, e.g., we can bound Ep, I(f;,£)
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Optimization under distributional uncertainty

Empirical risk minimization

mei@g/(fe,ﬁ;)v & ~ Po

i=1

» Robust under statistical fluctuation, e.g., we can bound Ep,/(f;, &)
» Not robust under data distribution shifts, when Q (# Po)



Optimization under distributional uncertainty

Empirical risk minimization

1Y
ménN;l(fb7€i)v &~ Po

» Robust under statistical fluctuation, e.g., we can bound I(fé,ﬁ)
» Not robust under data distribution shifts, when Q (# Py

Distributionally robust optimization and learning
(wer)
Eqol(f
’r(réln su Qﬂ( ,€)
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» Minimize risk under a@orst-case distribution @
e X



Optimization under distributional uncertainty

Empirical risk minimization

1
ménﬁzl(fb7§i)v &~ Po

» Robust under statistical fluctuation, e.g., we can bound Epol(fé,f
» Not robust under data distribution shifts, when Q (# Po)

Distributionally robust optimization and learning

min sup EoL(f, 4
fEHQE/F\)/[ Q( \

» Minimize risk under a local worst-case distribution @

» Distribution shift described by anEn@Ltmm



Optimization under distributional uncertainty

Empirical risk minimization

1Y
melnN;/(fe’fi), &~ Po

» Robust under statistical fluctuation, e.g., we can bound Ep,/(f;, &)
» Not robust under data distribution shifts, when Q (# Po)

Distributionally robust optimization and learning

i EoL(f
min sup Eq (f,€)

» Minimize risk under a local worst-case distribution @
» Distribution shift described by an ambiguity set M

» We can bound performance beyond statistical fl ion (classical learning theory)



DRO with divergence or metric ball constraints

M-
Let D denote a divergence measure or metric on the P, we consider the data-drjven
DRO problem




d-divergence (skip in class) Tgﬁm,,\/ .



Wasserstein distance >
C«r‘P }_:—F[)d < oo

p-Wasserstein distance between probability measures @, Q on R? (with_p finite_
C

~——
problem

moments) is defined through the following Kantorovi

W, (P, Q)P := min{/R b _X1|p@ A0 p. 2N - o},
>< —




Wasserstein distance

p-Wasserstein distance between probability measures fig, 11 on RY (with p finite
moments) is defined through the following Kantorovich problem

The dual Kantorovich problem ”
—_—

mix{/dl?—k/ Q:¢’¢EC(X)’&+,_(£§C(X’y) Vx,y



Wasserstein distance

p-Wasserstein distance between probability measures fig, 11 on RY (with p finite
moments) is defined through the following Kantorovich problem

Wp(P, Q)P := min{/Rd y |x0 —X1|Pd|'|‘71-§;)|‘| — P, TF?(;)H _ Q}
X

The dual Kantorovich problem

max {/X¢ dP + X¢ d@ : ¢,v € C(X), ¢(x)+9(y) < c(x,y), Vx,y}.

é@depends on dlmen5|ons e. g See also [Weed and Bach 2017])
> O(n R B




(Skip) The dynamic formulation of the Wasserstein distance

W
—
B

1 d
Wa(P, Q) min{/ / |ve|* dpie dt‘uo =P, 1 = Q, ——pe + div (vepr) = 0}
0 Jrd = dt —




c—transform

Given a function f : X — R we define its {c—transform} (or c—conjugate function) by

R
130 = it elxo) - 7() l
s
» Moreover, we say that a fuicti is c—concave if there exists ¢ such that
Y = ¢ and we denote by W.(X) the set of c—concave functions.

-




c—transform

Given a function f : X — R we define its {c—transform} (or c—conjugate function) by

Fé(y) = inf c(x,y) = F(x).

» Moreover, we say that a function 1) is c—concave if there exists ¢ such that
1 = ¢° and we denote by W (X) the set of c—concave functions.
» Using this transform, we can write down the so-called semi-dual formulation



c—transform

Given a function f : X — R we define i

f(y) = inf c(x,y) — f(x).

- xeX

» Moreover, we say that a function ¢ is@ there exists ¢
1 = ¢° and we denote by W (X) the set of c--concave functions.

» Using this transform, we can write down the so-called semi-dual formulation

max{/xgbdu+/x¢cd1/: G\UC(X)}.

» Exercise. Can you see the relation with the a-strong convexity and|[5-smoothness
—
we talked about?




Dual reformulation for 2-Wasserstein DRO F

]

The primal DRO problem is intractable
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Dual reformulation for 2-Wasserstein DRO

A v
F = _Lz g% R
The primal DRO problem is intractable N Nt 994

mein su;z Epl(6,€).

W (P,P)<e

Fortunately, it has a strong dual as follg

value

ws, i.e., the two problems have the same optimal




Dual reformulation for 2-Wasserstein DRO

The primal DRO problem is intractable

min  sup Epl(6,¢).
Ws(P,P)<e

Fortunately, it has a strong dual as follows, i.e., the two problems have the same optimal

value

N

min l Z(/g))‘H”z({,) + )\62

o.2>0 N 4
i=1

This can be shown to motivate a stochastic gradient algorithm for DRO.
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Kernel maximum mean discrepancy (MMD)
MMD(P. Q) = | [ k(x()dBs- [ k(x.)dQ))

IM 4 %‘Q@
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Kernel maximum mean discrepancy (MMD)

MMD(P ):|/k )dP — /X/)i(@

Given two samples from the distribution of interest
xi~Pli=1...Myyj~Q,j=1...N,

)

MMD(P, é@: é?fx X/Npk(x,x’) +E, y/NQk(y,y’) — 2EXNP’yNQk(X y) /

M N M—N
1

T 2 2 ki xg) ZZkMJ szx,,y,

i=1j=1 i=1j=1 L[\

This is particularly handy in, e.g., training deep generative models. 2
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Kernel maximum mean discrepancy (MMD)

MMD(P, Q) = II/k )dP /kx )dQ

Given two samples from the distribution of interest ){X O
xi~Pli=1...Myyj~Q,j=1...N, @ %
. KTa: -
MMD(P, Q)2 = Xx’rka(X X,) + Eyy NQk(y y/) - 2EX~Py~Qk(X Y)
1 M N
%m;;kxn j z;z;k)/nyj z;z;kxhyj)
i=1 j= i=1j i=1j

This is particularly handy in, e.g., training deep generative models.

Just like W, the MMD has a dual formulation W
MMD(P, Q) = /fd (P - Q).
(1 f|>¢<1 -



Kernel maximum mean discrepancy (MMD)

MMD(P, Q) := II/k )dP — /kx )dQll3.

Given two samples from the distribution of interest
xi~Pli=1...Myyj~Q,j=1...N,

MMD(P, Q)2 = xx’NPk(X XI)—i-EnyQk(y y/)_2EX~Py~Qk(X Y)

M N
ST k) + i DS k)~ 2 33 k)

i=1j=1 11_/1 11_/1
This is particularly handy in, e.g., training deep generative models.

Just like W,, the MMD has a dual formulation

MMD(P,Q) = sup [ Fd(P- Q)
IFlla<1

Convergence 7 . ;‘T
MMD(P, Py) < (



Dual reformulation for Kernel DRO

The DRO problem with MMD constraint
r————
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can be reformulated using a Kantorovich-type duality as
grovich-type duall
k
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Dual reformulation for Kernel DRO
The DRO problem with MMD constraint

min  sup  Epl/(6,¢)
 MMD(P.P)<e

can be reformulated using a Kantorovich-type duality as

min —zf &) +ellflln st 1(9,€) < F(), V€ ane.

0,feH N “ R

Optionally, we may consider to solve the_problem with a relaxed (albeit with statistical
guarantee) constraint ’ﬁgJ :

10.6) < F(&), i=1,... .



Dual reformulation for Kernel DRO
The DRO problem with MMD constraint l/

min  sup  Epl/(6,¢)
 MMD(P.P)<e

can be reformulated using a Kantorovich-type duality as

1
Jmin ; (&) +ellflln st 1(8,€) < F(€),VE ace.

Optionally, we may consider to solve the problem with a relaxed (albeit with statistical

guarantee) constraint
I(G,f;)%f, i=1,...N.

The solution has the nice property of being

» a kernel interpolant of the loss /(6,&) at the data points &;'s.



Dual reformulation for Kernel DRO A
The DRO problem with MMD constraint BL @_@

Optionally, we may consider to solve the problem with a relaxed (albeit with statistical
guarantee) constraint
10,&) < (&), i=1,...N.

The solution has the nice property o

eing

» a kernel interpolant of the loss /(6,&) at the data points &;'s.
> a witness (optimal test) function between P and the underlying worst-case
distribution P.



Going beyond DRO



Going beyond DRO

> Big gap between theory and practice in large-scale learning models



Going beyond DRO

> Big gap between theory and practice in large-scale learning models

> inuous optimization and gradient flows of nonlinear functionals of measures
: - — —_—
and distribution
EG
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