Day 2: Data-Driven Modeling and Optimization of Dynamical Systems under Uncertainty

Jia-Jie Zhu

WIAS-Berlin

July 14, 2022

Mirror descent

We also define the Bregman divergence associated with as

$$B_{\phi}(x,y) = \phi(x) - \phi(y) - \nabla \phi(y)^{\dagger}(x-y)$$

Mirror descent update:

$$x_{t+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x_t) + g_t^{\top}(x - x_t) + \frac{1}{\eta_k} B_{\Phi}(x, x_t) \right\}$$

Example of MD: Euclidean norm

Mirror map
$$\Phi(x) = \frac{1}{2} ||x||_2^2$$
.

Example of MD: Euclidean norm

Mirror map
$$\Phi(x) = \frac{1}{2} ||x||_2^2$$
.

MD:

MD:
$$x_{k+1} = \underset{x}{\operatorname{argmin}} f(x_k) + g_k^{\top}(x - x_k) + \frac{1}{2\eta_k} \|x - x_k\|_2^2.$$
 This is equivalent to (sub-)GD with step η_k .

Example of MD: negative entropy

Example of MD: negative entropy

Mirror map $\Phi(x) = \sum_{i=1}^{d} x(i) \log x(i)$. The resulting Bregman divergence is the KL-divergence $D_{\Phi}(x) = \sum_{i=1}^{d} x(i) \log \frac{x(i)}{y(i)}$.

Example of MD: negative entropy

Mirror map $\Phi(x) = \sum_{i=1}^{d} x(i) \log x(i)$. The resulting Bregman divergence is the KL-divergence $D_{\Phi}(x,y) = \sum_{i=1}^{d} x(i) \log \frac{x(i)}{y(i)}$.

If we restrict x to a (discrete probability) simple $1^{\top}x = 1$ then the MD update

$$x_{t+1} = \underset{1^\top x = 1}{\operatorname{argmin}} f(x_t) + g_t^\top (x - x_t) + \frac{1}{\eta} B_{\Phi}(x, x_t)$$

has the closed-form

$$x_{i,k+1} = \frac{x_{i,k}e^{-\eta_{i,j}g_{k}}}{\sum_{j=1}^{n} x_{j,k}e^{-\eta_{i,j}g_{k}}}, \quad i = 1, 2, \dots, n$$

MD convergence

Let Φ be ρ -strongly convex in $\|\cdot\|$. Let $R^2 = \sup_x \Phi(x) - \Phi(x_1)$, and f be convex and L-Lipschitz w.r.t. $\|\cdot\|$. Then mirror descent with $\eta = \frac{R}{L} \sqrt{\frac{2\rho}{t}}$ satisfies

$$f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s}\right)-f(x^{*})\leq R\sqrt{\frac{2}{\rho t}}.$$

MD convergence

Let Φ be ρ -strongly convex in $\|\cdot\|$. Let $R^2 = \sup_x \Phi(x) - \Phi(x_1)$, and f be convex and L-Lipschitz w.r.t. $\|\cdot\|$. Then mirror descent with $\eta = \frac{R}{L} \sqrt{\frac{2\rho}{t}}$ satisfies

$$f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s}\right)-f(x^{*})\leq RL\sqrt{\frac{2}{\rho t}}.$$

For example, for negative entropy $R \leq \sqrt{\log(d)}$.

Stochastic (sub-)gradient descent

Stochastic oracle:

$$\mathbb{E}[\tilde{g}](\tilde{x}) \in \overline{\partial f(x)}.$$

 $x_{t+1} = x_t - \eta_t \tilde{g}(x_t).$

Then, SGD update rule:

Stochastic (sub-)gradient descent

Stochastic oracle:

$$\mathbb{E} \ \tilde{g}(x) \in \partial f(x).$$

Xo Xi Xy

Then, SGD update rule:

$$x_{t+1} = x_t - \eta_t \tilde{g}(x_t).$$

Convergence. Let f be α -strongly convex, and assume that the stochastic oracle is such that $\mathbb{E}\|\tilde{g}(x)\|^2 \leq B^2$. Then SGD with $\eta_k = \frac{2}{\alpha(k+1)}$ satisfies

$$\mathbb{E} f\left(\sum_{k=1}^{t} \frac{2k}{t(t+1)} x_k\right) - f(x^*) \leq \frac{2B^2}{\alpha(t+1)}.$$

$$f(x_{\bullet})$$

(Skip) stochastic mirror descent (S-MD)

Let $x_1 \in \operatorname{argmin}_{\mathcal{X}} \Phi(x)$, and

$$x_{t+1} = \underset{x}{\operatorname{argmin}} f(x_t) + \widetilde{g}(x_t)^{\top}(x - x_t) + \frac{1}{\eta} B_{\Phi}(x, x_t).$$

Convergence. Let Φ be a mirror map 1-strongly convex. Let $R^2 = \sup_x \Phi(x) - \Phi(x_1)$. Let f be convex and β -smooth w.r.t. $\|\cdot\|$. Assume that the stochastic oracle is such that $\mathbb{E}\|\nabla f(x) - \tilde{g}(x)\|_*^2 \leq \sigma^2$. Then S-MD with stepsize $\frac{1}{\beta+1/\eta}$ and $\eta = \frac{R}{\sigma}\sqrt{\frac{2}{t}}$ satisfies

$$\mathbb{E}f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s+1}\right)-f(x^*)\leq R\sigma\sqrt{\frac{2}{t}+\frac{\beta R^2}{t}}.$$

Compare the basic gradient descent with SGD for average loss functions

Empirical risk minimization

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} I(f_{\theta}(\xi_i)), \quad \xi_i \sim P_0$$
 Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0} I(f_{\hat{\theta}}, \xi)$

Empirical risk minimization

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} I(f_{\theta}, \xi_i), \quad \xi_i \sim P_0$$

- ▶ Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0}I(f_{\hat{\theta}},\xi)$
- Not robust under data distribution shifts, when Q $(
 eq P_0)$

Empirical risk minimization

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} I(f_{\theta}, \xi_i), \quad \xi_i \sim P_0$$

- Robust under statistical fluctuation, e.g., we can bound $(f_{\hat{\theta}}, \xi)$ Not robust under data distribution shifts, when $(f_{\hat{\theta}}, \xi)$

Distributionally robust optimization and learning

$$\min_{f \in \mathcal{H}} \sup_{Q \in \mathcal{M}} \mathbb{E}_{Q}(f, \xi)$$

► Minimize risk under a local worst-case distribution Q

Empirical risk minimization

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} I(f_{\theta}, \xi_i), \quad \xi_i \sim P_0$$

- ▶ Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0}I(f_{\hat{\theta}},\xi)$
- Not robust under data distribution shifts, when Q ($\neq P_0$)

Distributionally robust optimization and learning

$$\min_{f \in \mathcal{H}} \sup_{\mathbf{Q} \in \mathcal{M}} \mathbb{E}_{\mathbf{Q}} L(f, \mathbf{\xi})$$

- Minimize risk under a local worst-case distribution Q
- Distribution shift described by an ambiguity set M

Empirical risk minimization

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} I(f_{\theta}, \xi_i), \quad \xi_i \sim P_0$$

- ▶ Robust under statistical fluctuation, e.g., we can bound $\mathbb{E}_{P_0}I(f_{\hat{\theta}},\xi)$
- Not robust under data distribution shifts, when Q ($\neq P_0$)

Distributionally robust optimization and learning

$$\min_{f \in \mathcal{H}} \sup_{\mathbf{Q} \in \mathcal{M}} \mathbb{E}_{\mathbf{Q}} L(f, \xi)$$

- Minimize risk under a local worst-case distribution Q
- lacktriangle Distribution shift described by an ambiguity set ${\cal M}$
- We can bound performance beyond statistical fluctuation (classical learning theory)

DRO with divergence or metric ball constraints

Let \mathcal{D} denote a divergence measure or metric on the \mathcal{P} , we consider the <u>data-driven</u>

Φ-divergence (skip in class)

Tsylorov - -

Wasserstein distance

p-Wasserstein distance between probability measures p, p on \mathbb{R}^d (with p finite moments) is defined through the following Kantorovich problem

$$W_p(P,Q)^p := \min \Big\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x_0 - x_1|^p \sqrt{\Pi} \pi_{\#}^{(1)} \Pi = P, \ \pi_{\#}^{(2)} \Pi = Q \Big\}.$$

Wasserstein distance

p-Wasserstein distance between probability measures μ_0, μ_1 on \mathbb{R}^d (with p finite moments) is defined through the following Kantorovich problem

Wasserstein distance

p-Wasserstein distance between probability measures μ_0, μ_1 on \mathbb{R}^d (with p finite moments) is defined through the following Kantorovich problem

$$W_p(P,Q)^p := \min \Big\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x_0 - x_1|^p \, \mathrm{d}\Pi \, \Big| \, \pi_\#^{(1)} \Pi = P, \, \, \pi_\#^{(2)} \Pi = Q \Big\}.$$

The dual Kantorovich problem

$$\max \left\{ \int_X \phi \ \mathrm{d}P + \int_X \psi \ \mathrm{d}Q \ : \ \phi, \psi \in C(X), \ \phi(x) + \psi(y) \le c(x,y), \ \forall x,y \right\}.$$

Convergence depends on dimensions, e.g., (See also [Weed and Bach 2017])

(Skip) The dynamic formulation of the Wasserstein distance

$$W_2(P,Q)^2 = \min \left\{ \int_0^1 \int_{\mathbb{R}^d} |v_t|^2 d\mu_t dt \, \Big| \, \mu_0 = P, \mu_1 = Q, \frac{d}{dt} \mu_t + \operatorname{div}(v_t \mu_t) = 0 \right\}$$

c—transform

Given a function $f: X \to \overline{\mathbb{R}}$ we define its $\{c-transform\}$ (or c-conjugate function) by

$$f^{c}(y) = \inf_{x \in X} \underbrace{c(x, y) - f(x)}$$

Moreover, we say that a function ψ is c-concave if there exists ϕ such that $\psi = \phi^c$ and we denote by $\Psi_c(X)$ the set of c-concave functions.

c-transform

Given a function $f: X \to \overline{\mathbb{R}}$ we define its $\{c-transform\}$ (or c-conjugate function) by

$$f^{c}(y) = \inf_{x \in X} c(x, y) - f(x).$$

- Moreover, we say that a function ψ is c-concave if there exists ϕ such that $\psi = \phi^c$ and we denote by $\Psi_c(X)$ the set of c-concave functions.
- Using this transform, we can write down the so-called semi-dual formulation

$$\max \left\{ \int_{X} \phi \, \mathrm{d}\mu + \int_{X} \phi^c \, \mathrm{d}\nu \ : \ \phi \in \Psi_c(X) \right\}.$$

c—transform

Given a function $f: X \to \overline{\mathbb{R}}$ we define its $\{c-transform\}$ (or c-conjugate function) by

$$f^{c}(y) = \inf_{x \in X} c(x, y) - f(x).$$

- Moreover, we say that a function ψ is c+concave if there exists ϕ such that $\psi = \phi^c$ and we denote by $\Psi_c(X)$ the set of c+concave functions.
- Using this transform, we can write down the so-called semi-dual formulation

$$\max \left\{ \int_X \phi \ \mathrm{d}\mu + \int_X \phi^c \ \mathrm{d}\nu \ : \ \phi \in \Psi_c(X) \right\}.$$

Exercise. Can you see the relation with the α-strong convexity and β-smoothness we talked about?

Dual reformulation for 2-Wasserstein DRO

The primal DRO problem is intractable

Dual reformulation for 2-Wasserstein DRO

Dual reformulation for 2-Wasserstein DRO

The primal DRO problem is intractable

$$\min_{\theta} \sup_{W_2(P,\hat{P}) \leq \epsilon} \mathbb{E}_P I(\theta,\xi).$$

Fortunately, it has a strong dual as follows, i.e., the two problems have the same optimal value

$$\min_{\theta,\lambda>0} \frac{1}{N} \sum_{i=1}^{N} (l_{\theta})^{\lambda \|\cdot\|^2} (\xi_i) + \lambda \epsilon^2$$

This can be shown to motivate a stochastic gradient algorithm for DRO.

$$\underline{MMD(P,Q)} := \| \int \underline{k(x)} dP_{S} - \int \underline{k(x,\cdot)} dQ \| \underline{H}$$

$$\int \underline{k(x,\cdot)} dP_{S} - \underline{Q(x)}$$

$$\mathsf{MMD}(P,Q) := \| \int k(x,\cdot) dP - \int k(x,\cdot) dQ \|_{\mathcal{H}}$$

Given two samples from the distribution of interest

$$x_i \sim P, i = 1 \dots M; y_j \sim Q, j = 1 \dots N,$$

$$\text{MMD}(P, Q) = \mathbb{E}_{x,x'\sim P} k(x,x') + \mathbb{E}_{y,y'\sim Q} k(y,y') - 2\mathbb{E}_{x\sim P,y\sim Q} k(x,y)$$

$$\approx \underbrace{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i, x_j') + \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(y_i, y_j') - 2\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i, y_j) }_{}$$

This is particularly handy in, e.g., training deep generative models.

$$\mathsf{MMD}(P,Q) := \| \int k(x,\cdot) dP - \int k(x,\cdot) dQ \|_{\mathcal{H}}.$$

Given two samples from the distribution of interest

$$x_i \sim P, i = 1 \dots M; y_j \sim Q, j = 1 \dots N,$$

$$\mathsf{MMD}(P,Q)^2 = \mathbb{E}_{\mathsf{x},\mathsf{x}'\sim P} k(\mathsf{x},\mathsf{x}') + \mathbb{E}_{\mathsf{y},\mathsf{y}'\sim Q} k(\mathsf{y},\mathsf{y}') - 2\mathbb{E}_{\mathsf{x}\sim P,\mathsf{y}\sim Q} k(\mathsf{x},\mathsf{y})$$

$$\approx \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i, x_j') + \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(y_i, y_j') - 2 \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i, y_j)$$

This is particularly handy in, e.g., training deep generative models.

Just like W_p , the MMD has a dual formulation

$$\mathsf{MMD}(P,Q) = \sup_{\|f\|_{\mathcal{X}} \leq 1} \int_{\mathcal{T}} f d(\underline{P} - \underline{Q}).$$

$$\mathsf{MMD}(P,Q) := \| \int \underline{k}(x,\cdot) dP - \int \underline{k}(x,\cdot) dQ \|_{\mathcal{H}}.$$

Given two samples from the distribution of interest

$$x_i \sim P, i = 1 \dots M; y_j \sim Q, j = 1 \dots N,$$

$$\mathsf{MMD}(P,Q)^2 = \mathbb{E}_{\mathsf{x},\mathsf{x}'\sim P}k(\mathsf{x},\mathsf{x}') + \mathbb{E}_{\mathsf{y},\mathsf{y}'\sim Q}k(\mathsf{y},\mathsf{y}') - 2\mathbb{E}_{\mathsf{x}\sim P,\mathsf{y}\sim Q}k(\mathsf{x},\mathsf{y})$$

$$\approx \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i, x_j') + \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(y_i, y_j') - 2 \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i, y_j)$$

This is particularly handy in, e.g., training deep generative models.

Just like W_p , the MMD has a dual formulation

$$\mathsf{MMD}(P,Q) = \sup_{\|f\|_{\mathcal{U}} < 1} \int f \ d(P-Q).$$

$$\mathsf{MMD}(\hat{P}, P_0) \leq \mathcal{O}(n^{-\frac{1}{2}})$$

The DRO problem with MMD constraint

$$\min_{\theta} \sup_{\mathsf{MMD}(P,\hat{P}) \leq \epsilon} \mathbb{E}_{P} I(\theta, \xi)$$

can be reformulated using a Kantorovich-type duality as

$$\min_{\theta, \mathbf{f} \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \mathbf{f}(\xi_i) + \epsilon \|\mathbf{f}\|_{\mathcal{H}} \quad \text{s.t. } I(\theta, \xi) \leq \mathbf{f}(\xi), \forall \xi \text{ a.e.}$$

Optionally, we may consider to solve the problem with a relaxed (albeit with statistical $I(\theta,\underline{\xi_i}) \leq \underline{f}(\underline{\xi_i}), \ i = 1, \dots N.$ guarantee) constraint

$$I(\theta,\underline{\xi_i}) \leq f(\underline{\xi_i}), i = 1,\ldots N.$$

The DRO problem with MMD constraint

$$\min_{\theta} \sup_{\mathsf{MMD}(P,\hat{P}) < \epsilon} \mathbb{E}_{P} I(\theta, \xi)$$

can be reformulated using a Kantorovich-type duality as

$$\min_{\theta, \mathbf{f} \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \mathbf{f}(\xi_i) + \epsilon \|\mathbf{f}\|_{\mathcal{H}} \quad \text{s.t. } I(\theta, \xi) \leq \mathbf{f}(\xi), \forall \xi \text{ a.e.}$$

Optionally, we may consider to solve the problem with a relaxed (albeit with statistical guarantee) constraint

$$I(\theta,\xi_i) \stackrel{\checkmark}{=} f(\xi_i), i = 1,...N.$$

The solution has the nice property of being

 \blacktriangleright a kernel interpolant of the loss $I(\theta, \xi)$ at the data points ξ_i 's.

The DRO problem with MMD constraint

$$\min_{\theta} \sup_{\text{MMD}(P[\hat{P}] \leq \epsilon)} \mathbb{E}_{P}I(\theta, \xi)$$

can be reformulated using a Kantorovich-type duality as

$$\min_{\theta, \mathbf{f} \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \mathbf{f}(\xi_i) + \epsilon ||\mathbf{f}||_{\mathcal{H}} \quad \text{s.t. } I(\theta, \xi) \leq \mathbf{f}(\xi), \forall \xi \text{ a.e.}$$

Optionally, we may consider to solve the problem with a relaxed (albeit with statistical guarantee) constraint

$$I(\theta,\xi_i) \leq f(\xi_i), i = 1,...N.$$

The solution has the nice property of being

- ▶ a kernel interpolant of the loss $I(\theta, \xi)$ at the data points ξ_i 's.
- ▶ a witness (optimal test) function between \hat{P} and the underlying worst-case distribution P.

Going beyond DRO

Going beyond DRO

▶ Big gap between theory and practice in large-scale learning models

Going beyond DRO

- Big gap between theory and practice in large-scale learning models
- Continuous optimization and gradient flows of nonlinear functionals of measures and distributions

